M

NAVAL
POSTGRADUATE
2l HOO T,

MONTEREY, CALIFORNIA

L EES 15

API DEVELOPMENT
FOR PERSISTENT DATA SESSIONS SUPPORT

by
Chayutra Pailom
March 2005

Thesis Advisor: Su Wen
Thesis Co-Advisor: Arijit Das

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-

0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the 0Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2005 Master’s Thesis
4. TITLE AND SUBTITLE: API Development for Persistent | 5. FUNDING NUMBERS

Data Sessions Support

6. AUTHOR(S) Chayutra Pailom

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME (S) AND ADDRESS (ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILARILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)
This thesis studies and discusses the development of the API, called the

persistency API, for supporting the persistent data sessions. Without persistent
session support, network applications often need to be restarted from the beginning
when intermittent physical connection loss happens. Application programmers can use
the persistency API to achieve the service continuity. The persistency API provides
the interface that allows a program to continue retrieve data from the point the
connection is lost after the physical connection is restored. The focus of this thesis

is to develop a generalized ©persistency API that supports various types of
applications. This thesis studies the persistent session support for two types of
transport protocols, TCP and UDP, which are used by major network applications. An
application that performs text file and video file transfer is implemented to
demonstrate the persistent data transfer sessions for TCP and UDP, respectively. The
study shows that the proposed APIs can support the data transfer continuity in the
reconnection process.

14. SUBJECT TERMS Persistency API, M-TCP, UDP, TCP, PFTP 15. NUMBER OF
PAGES
165
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release, distribution is unlimited

API DEVELOPMENT
FOR PERSISTENT DATA SESSIONS SUPPORT

Chayutra Pailom
Captain, Royal Thai Army
B.S., Chulachomklao Royal Military Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Author: Chayutra Pailom

Approved by: Su Wen
Thesis Advisor

Arijit Das
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis studies and discusses the development of
the API, called the persistency API, for supporting the
persistent data sessions. Without persistent session
support, network applications often need to be restarted
from the beginning when intermittent physical connection
loss happens. Application programmers can use the
persistency API to achieve the service continuity. The
persistency API ©provides the interface that allows a
program to continue retrieve data from the point the
connection is lost after the ©physical connection is
restored. The focus of this thesis is to develop a
generalized persistency API that supports various types of
applications. This thesis studies the persistent session
support for two types of transport protocols, TCP and UDP,
which are used by major network applications. An
application that performs text file and video file transfer
is implemented to demonstrate the persistent data transfer
sesgions for TCP and UDP, respectively. The study shows
that the proposed APIs can support the data transfer

continuity in the reconnection process.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

IT.

IIT.

Iv.

TABLE OF CONTENTS

INTRODUCTION . . .o e s e e e e e e e e e e e e e 1
A. PROBLEM STATEMENT . . . e 1
B. SCOPE AND METHODOLOGY ittt ittt it e e e e e et e e e e e 1
C. RESEARCH QUESTIONS . . . ittt e 4
D. ORGANTI ZAT ION . . it i et e 4
BACKGROUND AND RELATED WORKS e e e e e 7
A. RELIABLE CONTENT DELIVERY WITH PERSISTENT DATA
SESSTIONS . . e e e e 7
1. Background e 7
B. EXISTING APPROACHES IN PROVIDING PERSISTENT DATA
SESSTIONS . . e e e e 9
1. Migratory Transmission Control Protocol (M-
0 9
a. OVEIVICW .« v v i i i e e e e e e e e e e e e e e e e 9
b. Goals and Features of M-TCP 10
c. M-TCP Mechanismuuuuiieenine... 11
2. Reliable Content Delivery Using Persistent
Data Sessions in Highly Mobile Environment ...13
a. PFTP Mechanism uueinein. 14
APTI DESIGNS FOR PERSISTENT DATA SESSIONS 19
A. INTRODUCTION TO APPLICATION PROGRAMMING INTERFACE .19
1. INLroducCtion ... e e 19
B. APT SUPPORT FOR PERSISTENT DATA SESSIONS 21
1. Practical Consideration 21
2. Problem CONCErn ittt it et 23
C. APT DESIGN FOR VARIOUS NETWORK APPLICATIONS 25
1. PUrpOSE . e 25
2. Area of Research e 25
DESIGN AND IMPLEMENTATION ittt et e e e e e e e e e e e e e 27
A. DE S TGN . . e e e e e e e e 27
1. Main System Componentsc....o.... 27
a. Graphic User Interface 28
2. Software and Development Tool 30
3. Basic API and Program Interactions 31
a. File Transfer 31
b. Client-server Communication Protocol32
c. Activity Diagram 35
d. Class Diagrams 36
B. PERSISTENCY API IMPLEMENTATION 38
1. OVeTrVIeW . . it e e 38

2. The Use of Persistency APT 40

a. Using Persistency API for TCP 42
b. Using Persistency API for UDP 43
C. APPLICATION USAGE GUIDE 45
1. Client ... e e 45
2. SETVET . o e e 48
V. I N 51
A. TESTING NETWORK DESCRIPTION 51
1. Practical Considerations and Limitations 51
2. Testing Network 52
B. TESTING SCENARTIOS . . . ittt et e e e e e e e e e e e e et e 53
1. Scenario Reference Code and Scenario’s
Description 54
C. TESTING RESULTS . . . ittt ittt e e e e e e e e e e e e e e e et 54
VI. CONCLUSION AND FUTURE WORKS . . . ittt ittt ettt et ettt e oo 63
A. SUMM A RY . . i e e e e e e e e e e e e e e e e 63
B. FUTURE WORK . . oot e s s e e e 64
1. Communication Protocol Design 64
2. Application Development 65
APPENDIX A. CLASS SOURCE CODE . . . ittt ittt et e e e e e e e e e e e e 67
APPENDIX B. CLASS DIAGRAMS . . i ittt it et e e e e e e e e e e e 141
LIST OF REFERENCES . . ittt ittt e 149
INITIAL DISTRIBUTION LIST ittt et e 151

viii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

= O O ~Joy U b W N

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.
38.

LIST OF FIGURES

Migration mechanism in M-TCP.................... 12
The communication scheme of PFTP application....14
The message request of PFTP application......... 14
The communication protocol of PFTP application..l6
OST Model with API.ttt 21
API support for end-to-end connection........... 21
API message flowsS. e 24
Preview of the client’s user interface.......... 30
Preview of the server’s user interface.......... 30
The communication scheme with persistency API

SUPPOT L . o o o e e 32
A reqgquest message packet.. L oo, 33
The communication protocol with API support..... 34
The activity diagram for persistency API........ 36
The class diagram for API support application...37
Client’s selection panel... 45
Client’s second panel for TCP session........... 46
Client’s second panel for UDP session........... 47
Client’s second panel during TCP transmission...47
Client’s second panel during UDP transmission.. .48
Information message from the server............. 49
The Server ProOCESS. . . o i i it 49
The server’s transmission ©process for TCP

SESSI 0N . i e e e 50
The server’s transmission ©process for UDP

SESSI 0N . i e e e 50
The home-based networking architecture.......... 52
The NPS-based WAN network setup................. 53
The server establishes the connection........... 55
The server i1s ready for the TCP file transfer...b55
The server is ready for the UDP file transfer...56
The proxy server process for a TCP session...... 56
The proxy server process for UDP session........ 56
The server process after new connection......... 57
The response of client side for CUIS-1.......... 57
The information message of the client (1)....... 58
The information message of the client (2)....... 58
The persistency API’s reconnection process...... 59
The client’s wuser interface during connection

failure. . .. e 60
The message from API showing the status (1)..... 60
The message from API showing the status (2)..... 60

ix

Figure 39. The final confirmation message.................. 61

Figure 40. Class diagram of the application client........ 142
Figure 41. Class diagram of the persistency API........... 143
Figure 42. Class diagram of the RTP packet................ 144
Figure 43. Class diagram of the application server........ 145
Figure 44. Class diagram of the application proxy server..146
Figure 45. Class diagram of the streaming video for RTP
and RTSP e 147

ACKNOWLEDGEMENTS

I would like to dedicate this thesis, the result of
two years and three months graduate study at the Naval
Postgraduate School, to my family who has encouraged me

through the process.

I would like to express my appreciation to my advisor,
Professor Su Wen. I could not have imagined having a better
supervisor and mentor for my master, and without her
commonsense, knowledge, perceptiveness, supervision and
support I would never have finished. I would also like to
thank my Co-Advisor, Arijit Das, for his administrative and
technical assistance and encouragement to read the whole

thing so thoroughly.

Finally, I want to thank my country and Royal Thai
Supreme Command who gave the opportunity to have this
Master’s degree in Computer Science in the United States of

America.

x1i

THIS PAGE INTENTIONALLY LEFT BLANK

xii

I. INTRODUCTION

A. PROBLEM STATEMENT

One of the problems during the Signal operation in
Thailand 1s the lack of service continuity of the data
communication between end users at the application level.
To complete the mission, the applications need to be fully
transferred regardless if the state of the physical
connection is disrupted or not. Currently, an error or the
loss of the physical connection during the data transfer
sessgions can cause the disruption in the application
operation. It requires manual restarting of the
application. If the physical connection is lost either from
the system itself or from the interference, it is not easy
£o reconnect at the beginning of the session and retransmit
the entire data in order to provide the reliable content
delivery. However, in each Signal operation, such
applications have to be resubmitted as soon as possible to
ensure the survivability of the sgervice. To achieve the
goal of the mission for this case, not only must the
service survivability be established but the applications
also need to operate seamlessly in the face of a physical
connection loss. The interrupt data or the state of the

connection must be continued from the point it was stopped.

B. SCOPE AND METHODOLOGY

This thesis develops an application-level support of
persistent sessions to various applications. Specifically,
APTIs for general applications using persistent connection

are designed and implemented.

The research follows the methodology that can be
conducted as follows. Firstly, the research starts with
searching for the existing protocol emphasizing File
Transfer Protocol, Real Time Streaming Protocol, and
Telnet. The study of these protocols can be Dbackground
knowledge 1n order to extend this concept for this
research. The research then goes on specifying each
protocol parameters and application reguirements for Dboth
user interface and the connection protocols. This area has
to be studied in depth because the result from development
for each parameter effects the system. The critical session
of this research is to design and develop a reconnection
sessgion wusing API for each application protocol. The
development of the API can be done using the supporting
idea above and this API can Dbe used for (generic
applications in the future. Finally, the testing phase for
the implemented API needs to be achieved in order to
guarantee the service for persistent sessions. This testing
is conducted on a wired environment to reconnect the FTP,
RTSP or Telnet respectively. If time permits, the migration
of each protocol will Dbe developed to support this
research.

Since Java programming language 1is popularly used in
computer network programming and provides a good
modularity, 1t was chosen to develop the APIs for this
thesis. Currently, there are a number of classes in Java
that can be used to support the reconnection session for
network protocols. However, each protocol has to be
written by the programmers on their own to provide the
reconnection session when it lost. No APIs specific for
persistent session support are currently available for

programmers to use directly. This thesis focuses on
2

building new APIs that programmers can write applications
with regardless of the underlying network protocols the
applications are using.

The network environment used for this thesis work was
based on a wired environment. The research was performed on
an end-to-end user’s connection. The implementation was
conducted using a connection on the same network and used a
variety of protocols to transmit the information and test
the API. A wireless scenario was an additional environment
tested for mobile device. As a result, this API can be
extended 1n its capability to fully support the wireless
environment. Therefore, both client and server for this
research was a workstation running a Windows operating
system.

The thesis did not consider the following as part of the

implementation:

e Security: The security aspect of the development 1is
not covered. Even though it will be used for the military
operations, the initial purpose for this development i1s to
achieve the survivability of the service. There 1is a
security tunneling design that would be appropriate to
encapsulate for each session. Future research may Dbe
necessary for the extension of this work to increase the
level of security.

e Scalability: Even though the multitasking approcach is
suitable for designing on the server-side application
transferring the data to other hosts, this thesis does not
address the capability to support a large number of users

that produce heavy traffic as a single server.

e Speed of recovery: For this thesis work, speed is not

an important factor of an experiment. The gspeed of the

transmission is forced by the physical connection media and
performance of both the sender and receiver, which are not

the main factors to be observed.

C. RESEARCH QUESTIONS
The following questions are considered in this thesis:
e What are the key components of persistent gsession
service?
e What are the key components that must be implemented

in preparing API to support application layer needs?

e How can this API support the reconnection session?

e What types of applications can benefit most from the
protocol developed?

e How can this communication supplement be flexible when

the availability of the information server varies?

D. ORGANIZATION

The covered material 1is organized into the following
chapters in order to fulfill the objectives of this thesis.
Chapter II covers the background and related works that
provide the introduction to Persistent Data Sessions and
previous research works. Chapter III refers to the on-going
Reliable Content Delivery using Persistent Data Sessions
along with the development of Application Programming
Interface related to this thesis project. Chapter IV covers
the design and implementation of the thesis process. It
describes the software design and programming procedure of
the prototype 1in detail. It also mentions how the most
important features of +the API are supported in the
reconnection state. Chapter V summarizes the testing phases

of the API development and objects models. Specific

scenarios are conducted for each protocol appropriately.
Finally, Chapter VI presents the conclusion, recommendation
and the future work to be continued in the establishment of
persistent data sessions by extending this thesis work to

support the wireless environment.

THIS PAGE INTENTIONALLY LEFT BLANK

IT. BACKGROUND AND RELATED WORKS

This chapter will discuss the general knowledge and
the previous research regarding persistent data sessions
that are related to the concept of this thesis work. The
concept of persistent data sessions and an overview of the
existing network-continuity protocols that have the

reconnection characteristics will be introduced separately.

A. RELIABLE CONTENT DELIVERY WITH PERSISTENT DATA
SESSIONS
1. Background

This section refers to the general idea of persistent
data sessions which provides reliable content delivery of
the data communication. According to TCP/IP model, this
procedure 1s referred to the process at the application
layer. Before going into the detail of persistent sessions,
the term ‘session’ will be described as a fundamental idea
for this section. A session is either a lasting connection
using the session layer of a network protocol or a lasting
connection between a user (or wuser agent) and a peer,
typically a server, usually involving the exchange of many
packets between the wuser's computer and the server. A
session is typically implemented as a layer in a network
protocol [1l]. In the case of transport protocols which do
not implement a formal session layer or where sessions at
the session layer are generally very short-lived, sessions
are maintained by a higher level program using a method
defined in the data being exchanged.

To get the information from a server, a system may

issue a “request” packet to the server. If a “reply” packet

arrives 1in response, the transferring session will be
started by using one of the following transport protocols:
e Transmission Control Protocol (TCP) providing a one-
to-one connection oriented, reliable communication
service of the sequence and acknowledgement of packets

sent and recovery of packets lost during transmission.

e User Datagram Protocol (UDP) providing one-to-one or
one-to-many connectionless, unreliable connection
service which is used when the amount of data to be
Lransferred is small, when the overhead of
establishing a TCP connection 1s not desired, or when
the application or upper-layer protocol provide
reliable delivery.

Extended from the concept of the term ‘session’,
persistent data sessions, or persistent connections which
are sometimes called “keep-alive” connections or

7

“connection reuse,” can be used to optimize the way servers
return content to the client. It is the idea of using the
fLransport protocol connection to send and receive multiple
requests or responses, as opposed to opening a new one for
every single request or response pair. As proposed, the
client can send multiple requests on a single connection.
This capability 1s negotiated in response to the first
request on a connection. The server can choose how many
requests it will allow on a persistent connection and also
how long to wailt for subsequent requests before terminating
the connection. Most servers will allow you to configure
these things.

There are gseveral advantages of using persistent

connections [2] including:

e Network friendly. Less network traffic due to fewer

setting up and tearing down of connections.

e Reduced latency on subsequent request. Due to

avoidance of initial protocol handshake

e Long lasting connections allowing protocols sufficient
time to determine the congestion state of the network,
thus to react appropriately.

B. EXISTING APPROACHES IN PROVIDING PERSISTENT DATA
SESSIONS

This section i1s about the existing protocols related
to the service continuity characteristic. The concept of
both kinds of protocol 1is related to each other but
different in the level of operation. M-TCP 1s resided in
the transport layer which provides the guarantee service
similar to TCP but has additional features 1in order to
achieve the service continuity. Another protocol called
PFTP 1is a little bit different from the first protocol
because it is developed at the application layer which uses
TCP as an underlying protocol. The details of each will be
described following.

1. Migratory Transmission Control Protocol (M-TCP)

a. Overview

This protocol is proposed from the Laboratory for
Network Centric Computing (Disco Lab) at Rutgers University
[3]. The concept of this protocol 1is called service
continuity. M-TCP 1s a transport layer ©protocol for
building highly available network services Dby means of
transparent migration of the server endpoint of a 1live
connection between cooperating servers that provide the
same service. The origin and destination server hosts
cooperate by transferring supporting state 1in order to

accommodate the migrating connection. It is one of the
9

network reconnection solutions to reestablish another
connection using the point that lost the connection to the
previous server to try to reconnect to another server for
retrieving the same information at the point it was lost.
Therefore, the two servers that serve such clients have to

have good coordination between each other.

The client starts a service session by connecting
to a preferred server, which supplies the addresses of its
cooperating servers, along with authentication information.
The c¢lient endpoint of a connection can initiate a
migration by contacting one of the alternate servers. The
migration trigger may reside with the client or with any of
the servers. The server endpoint of the connection migrates
between the cooperating servers, transparent to the client

application.

This protocol is compatible with TCP in which the
client protocol stack can initiate migration of the remote
end point of live connection to an alternate server.
Migration 1s transparent to the client application. M-TCP
decouples the migration mechanism from migration policy
that specifies when a connection should migrate. Migration
may be triggered according to some migration policy under
conditions 1like server overload network congestion, the
loss of physical connection, degradation 1in performance
perceived by client, etc.

b. Goals and Features of M-TCP

The goal of the M-TCP 1s to support the
efficiency of 1live connections. It also offers a better
alternative than the simple retransmission to the same
server, which may be suffering from overload or Denial of

Service attack, or may be known or maybe not be easily

10

reachable due to congestion, and decouples a given service

from the unique/fixed identity of its provider.

This protocol has features as the following. It
is general and flexible which means that it doesn’t rely on
knowledge about a given server application or application
level protocol. It allows fine-ground migration of live
individual connection, unlike heavyweight process migration
schemes, and it is symmetric with respect to and decoupled
from any migration policy

c. M-TCP Mechanism

The M-TCP design assumes that the state of the
server application can be logically split among connections
by defining a fine-grained state associated with each
connection.

The M-TCP service interface can be best described
as a contract between the server application and the
Lransport protocol. According to this contract, the
application must execute the following actions: (i) export
a state snapshot at the old server, when it is consistent
with data sent/received on the connection; (ii) import the
last state snapshot at the new server after migration, to
resume service to client. In exchange, the protocol: (i)
transfers the per-connection state to the new server and
(ii) synchronizes the per-connection application state with

the protocol state.

11

y

i~ Cooperative
/ servers

Client

c)

SN

2
Figure 1. Migration mechanism in M-TCP.
From Figure 1, Connection cid, initially
established by client C with server S$S2, migrates to
alternate server 82. The migration mechanism of M-TCP

ensures that the new server resumes service while
preserving the exactly-once delivery semantics across
migration, without freezing or otherwise disrupting the
traffic on the connection. The client application does not
need to change.

A Gliemt contacts the service through a
connection Cid to & preferred server 5l. At the contsgtion
setup, S1 supplies the addresses of 1ts cooperating
servers, along with migration certificates. The client-side
M-TCP initiates migration of Cid by opening a new
connection to an alternate server 82, sending the migration

certificate in a special option. (Figure 1(a)). Lo

12

reincarnate Cid at S2, M-TCP transfers associated state
(protocol state and the last snapshot) from S1.

Depending on the implementation, the state
transfer can be either (i) lazy (on-demand), 1.e., it
occurs at the time migration is initiated, or (ii) eager,
i.e., 1t occurs in anticipation of migration, e.g., when a
new snapshot 1s taken. Figure 1 shows the lazy transfer
version: S2 sends a request (b) to S1 and receives the
state (c) . If the migrating endpoint is reinstated
successfully at S2, then C and S2 complete the handshake,
which ends the migration (d).

Upon accepting the migrated connection, the
server application at 82 imports the state snapshot. It
then resumes service using the snapshot as a restart point,
and performs execution replay for a log-based recovery
supported by the protocol. The execution replay restores
the state of the service at the new server and synchronizes
it with the protocol state. To support the replay, M-TCP
logs and transfers from S1 data received and acknowledged
since the 1last snapshot. It also transfers unacknowledged
data sent before the last snapshot, for retransmission from
S2.

2. Reliable Content Delivery Using Persistent Data
Sesgssions in Highly Mobile Environment

The work was to develop a client-server file transfer
application named Partial File Transfer Protocol (PFTP) to
demonstrate a possible solution to the problem of a lack of
persistent data sessions 1in wireless mobile networks and
LANs. This protocol was developed at the application level
which used TCP as an underlying protocol. For this purpose,
a prototype communication protocol between the client and

the server were designed using Java Technology to achieve

13

dynamic partial file retrieval in the event of connection
loss. The goal is to produce an application user interface
that visualizes the partial file retrieval process in real
time. This is a proof of concept for service continuity
protocol development. Since it has a limitation in
transport protoco.l development, A can support some
applications that wuse TCP as an underlying protocol only.
As a result, the concept of this work is to be extended in
order to support various applications that use either TCP
or UDP as an underlying protocol.

a. PFTP Mechanism

PFTP is an application layer protocol that 1is
based on a client-server communication scheme. For the file
transfer process, an application layer communication
protocol must be established. The TCP protocol 1is the
underlying protocol for every connection and data transfer

between the client and server (Figure 2).

PFTP TCP based PFTP
Client Server

Communication profocol

Figure 2. The communication scheme of PFTP application

File Request Message

Request e File Name Offset Packet Size
Type Name
Figure 3. The message request of PFTP application

14

This communication protocol is shown in Figure 4
[4] and starts with the PFTP server running and waiting for
clients at port 6789. When the user opens the PFTP client
application, it must choose a PFTP server manually or from
a list of already existing servers in order to retrieve the
list of files available for transfer. In the predefined
server case, an Auto server mode option exists which can be
selected when the user wants the application to choose a
predefined PFTP server randomly during either the initial
available file retrieval or the partial file retrieval
process after a connection loss. When the file 1list is
retrieved, a user selects a file name and the packet size
and forms a file request packet that is sent to the server.

The request packet fields are shown in Figure 3.

15

PETP Client PFETP Server

Client is running.
User selects a server to
rereive the files that are
available to transfer

Server is running

Waiting for clients

Server replies

sending the
available file list
User selects the file gend the file list
transfer features. Conreac)
Ask for the file. annect 1o server { arver check if

Send the file request

> has the file and
|| compute the file
I/ﬁ / hash value.
Get ready to -
receive file e \he hash value and e file: size b4
packets r’r—\\
e T
Sending fle yaest | —— Start sending

Receiving

T

the file packets
gending fle packets

Client sense the
connection loss and
reconnect with server.

Connecl 1o Sarvar

Sets the offset Sen)
and the < 0e parlal e Toqtiest Server checks if
hash value has the file with the
in the file request packet same hash and
and ask the file. continue to send
the rest of the file
sending I packel® PR

Receiving

Receive all the

packets,
Close the connection

Figure 4. The communication protocol of PFTP application

The server checks 1f it has the file and, if it
does, sends the file size and the hash wvalue of the file
back to client. Then the server starts reading the file
data and sends 1t 1in packets to the client. If, during the

16

packet transmission, a connection failure occurs, the
client side generates partial-file-request packet, setting
the offset field wvalue with the next expected packet
counter and the hash field wvalue with the file hash
received at the start of the file transfer. Then the client
attempts to reconnect with the same server or, 1f the Auto
server mode 1is selected, with the next available PFTP
server, and when it 1s connected, sends the prepared

partial-file-request packet.

The server that receives the packet, 1f the
offset wvalue 1s greater that =zero, checks if it has the
same file with the same hash wvalue and continues sending
the remaining data in packets to the client. Each file
connection loss causes the same partial transfer retrieval
scheme until the client receives all the file packets and

both the client- and server-sides close the connection.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

IIT. APT DESIGNS FOR PERSISTENT DATA SESSIONS

This chapter provides an introduction Lo the
background, capability, and purposes of the APIs used for
this thesis. APIs developed for this thesis to support

persistent sessions for various applications will Dbe

presented.
A. INTRODUCTION TO APPLICATION PROGRAMMING INTERFACE
1. Introduction

An Application Programming Interface (API) defines how
programmers utilize particular computers features. Some
often used APIs provide programmers with access to display
system, file systems, database systems, and networking
systems. The APIs developed in this thesis are designed to
support a structured approach to network programming.
Special attention has been paid to the needs of multimedia
applications and to the future requirements of network
protocols. After surveying the current approaches, the need
was observed for an interface that provides ease of use,
extendibility and portability. An object-oriented method
that will meet these needs is chosen.

Currently, application programmers are writing more
details for underlying functionality and wusing specific
code to interface with the network and transport layers
defined by the O0SI model. This requires that programmers
learn how to communicate with the underlying network.
Technicalities include opening and closing communication
channels and manipulating data structures. An example of a
low level interface used by application programmers is the

Berkeley Sockets interface which UNIX systems support [5].

19

Many applications that run over networks contain this
type of interface or one of equivalent complexity.
Moreover, the complexity is coupled with redundancy; not
only must an interface be written for every application, if
a programmer changes the protocol an application is using,
the program’s interface to the transport and network layers
needs to be rewritten.

This non-portability of applications between network
and transport layer protocols could be aggravated by the
availability of new, more intricate network level protocols
which provide features for multimedia and real-time
applications. These protocols are designed to support
resource allocation. They allow applications to specify
their performance requirements and receive performance
guarantees. Although the demand for these services has been
firmly established, easy access to the protocols that
supply them has not yet been made widely available. With
such a variety of protocols and the complexity inherent in
implementing them, it would Dbe efficient to supply
application programmers with a high-level interface to the
underlying layers. The need for improvements in system
software in order to not only support the basic reliable
protocol but also support real-time and multimedia
application has been recognized by previous research. For
these reasons, a generic Application Programmer Interface
(API) which acts as a level of abstraction Dbetween the
application programmer and the network and transport layer
protocols are developed. Figure 5 shows the architecture

where API abstractly resides within the 0SI model.

20

Application Layer

Transport Layer

Network Layer

Data Link Layer

Figure 5. 0OSI Model with APIT

The following figure is an example of the data flow
from side to side wusing API support starting from the

application layer.

Figure 6. API support for end-to-end connection
B. APTI SUPPORT FOR PERSISTENT DATA SESSIONS
g Practical Consideration

During a normal network session, servers will usually
have some time-out value beyond which they will no longer

maintain an inactive or lost connection. Proxy servers

21

might make this a higher value since it is likely that the
client will be making more connections through the same
server. The use of persistent connections places no
requirements on the length (or existence) of this time-out
for either the client or the server.

When a client or server wishes to time-out, it should
issue a graceful close on the transport connection. Clients
and servers should both constantly watch for the other side
of the transport close, and respond to it appropriately. If
a client or server does not detect the other side's close
promptly 1t could cause unnecessary resource drain on the
network.

A client, server, or proxy may close the transport
connection at any time. For example, a client might have
started to send a new request at the same time that the
server has decided to close the “idle" or “lost”
connection. From the server's point of view the connection
is being closed while it was idle, but from the client's
point of view a request 1is in progress.

This means that clients, servers, and proxies must be
able to recover from asynchronous close events. Client
software should reopen the transport connection and
retransmit the aborted sequence of requests without user
interaction so long as the request sequence 1s idempotent.
We propose to develop software procedures at the
application layer and generate APIs for general use. Non-
idempotent methods or segquences must not be automatically
retried, although user agents may offer a human operator
the choice of retrying the request(s). Confirmation by
user-agent software with semantic understanding of the

application may substitute for user confirmation.

22

Servers should always respond tTo at least one request
per connection, if at all possible. Servers should not
close a connection in the middle of transmitting a
response, unless a network or client failure is suspected.

2. Problem Concern

From a consideration above, the problem will be mainly
focused on the lost state. When a physical connection is
lost, that means the connection has to be reestablished and
the data has to be retransmitted from the beginning of the
file. For TCP connection, even though it uses a connection-
oriented mechanism which controls the content of the data
£to be sent appropriately, 1t 1s necessary to make a new
connection manually for this scenario. The API will help
the programmers during this session Dby automatically
detecting the ©physical connection and making a new
connection instead of the client. In case of an unreliable
connection 1like UDP, the data 1s being sent regardless of
the packet loss. To be a persistent session, the proposed
APT will control the rest of the data in order to achieve
the virtual reliable protocol as a persistent data session.

In order to assist users in programming the process of
reconnection, the procedure of the reconnection phase will
have to be provided step-by-step. There is no programming
library that can support all of the steps for the
reconnection process. This is also applied to the states of
connectionless session. The lost connection has to be
reestablished in order to complete sending the file to the
destination.

As above, the API is another proposed solution for an
easier reconnection. Such a package can be called to
manipulate the physical connection instead of doing so

manually. All the programmers need is to call this package
23

which consists of the related functions to reconnect the
ongoing session when the physical connection has been lost.
Therefore, while the data is being transferred to the
destination, the state of the connection and the critical
parameters the program is using at that time have to be
tragked or recorded din order Lo make g reconnection without
prompting the user. The following figure is an example of
the API process for mebiliky glignt [6]. This client eaf be

both mobility and stationary object.

Mability Client AP| ealls _[Mobility Client

{

Sﬂmﬂmqu
(Mability Client Event)

DispatchMessage

Mobility Client Events

Figure], API message flows

24

C. API DESIGN FOR VARIOUS NETWORK APPLICATIONS

1. Purpose

For this thesis project, the APIs are not developed
for specific applications, but aim to be wused by a
multitude of programs that use either TCP or UDP as an
underlying protocol. Therefore, the existing socket APIs
will be used as supporting libraries for the implementation
of the new API. The development of the software-based
application will be performed in JAVA technology
programming.

2. Area of Research

Although there are a variety of the applications used
in today’s networking scope, the underlying protocols of
such applications are still either TCP or UDP. The API
will be developed to support the problem mentioned above
along with the development of the client and the server
application for a particular scenario. This thesis will
develop the API to Dbe suitable for wvarious applications
using TCP or UDP as an underlying protocol. Ideally, it has
to be developed to be suitable for all applications (e.g.
FTP, Telnet or UDP-related applications), but for this
thesis not all applications will be covered because of the
different characteristics of each application. Each user-
defined protocol has different states and parameters to be
reconnected so that the thesis project will be focused on
the service continuity based on the ©popularity of

applications. The protocols we are resgsearching are File

Transfer Protocol (FTP), which wuses TCP as an underlying
protocol, and Real Time Protocol (RTP), which uses UDP as
an underlying protocol. These two applications can be

instances of the development for transport protocol.

Certain features of real time applications, such as
25

synchronization, are not currently supported but are

addressed as areas for further study.

26

IV. DESIGN AND IMPLEMENTATION

This chapter presents the «critical parts of the
project, including the APIs developed for ©persistent
sessgsion support and the client-server application that
utilizes the APIs. The details of the API and the GUI
implementation are discussed. The application-user
interactions are presented at the end of this chapter.

A. DESIGN

1. Main System Components

For the rest of this thesis, we will refer the APIs
developed 1in this research to support persistent sessions
the Persistency API. The application developed for this
thesis has three major components: the server, the client
and the persistency APIs. The details of each component are

discussed below:

e Server - It is the data source in the communication
and can handle multiple connections as needed. It
needs to understand two types of requests, which is
indicated 1n the initial connection message: the
connection request and the reconnection request. The
reconnection request contains more information than
the first type. Based on the type of request and the
information associated with it, the server determines

the starting point of the data to be sent.

e (Client - It provides the user interface and interacts
with the user in order to meet the user requirement.
It starts the reconnection process in the face of
physical connection loss by calling the persistency

APIs without wuser i1ntervention. The wuser needs to

27

input the arguments required for the persistency APIs

at the initialization.

e Persistency APIs - It supports the service continuity
between the server and the client. It is the
additional API derived from the existing library that
the client needs to maintain persistent sessions for
both TCP and UDP connections. It is defined as a class
and can be called by the client when it detects a
physical connection failure.

Persistency APT is a major component in the
application development and is used at the client side. The
application runs in two modes, TCP and UDP. In the TCP
mode, it transfers a file from server to client and can
recover from temporary connection loss. In UDP mode, it
transfers a wvideo from server to client and can recover
from Lemporary connection loss. In video file
transferring, there are two types of protocols involved for
the session. Real Time Streaming Protocol (RTSP) and Real
Time Protocol (RTP). RTSP is used for video control session
that uses TCP as an underlying protocol. RTP is used for
retrieving the video ©packets which 1s one of UDP
communications. The development is mainly focusing on the
RTP session 1n order to provide the continuity of the
video.

a. Graphic User Interface

Both c¢lient and server modules will provide a
user—-friendly interface. In this initial version the user
interface of the client side will provide three main

services:

28

Protocol selection for the data transfer
communication. The user must be able to select one

of the transport protocols for the data transfer.

View of the data transfer progress. A progress bar
with the percentage of the file transfer session
completed is implemented.

View of the content of the file for both cases of
text file and video file at the client side. These
services are represented as sgeparate panels to the
user 1interface frame. Figure 8 shows a primitive
version of a user interface at the client side.

For the server side, it is unnecessary to provide

the user interface. Figure 9 shows an initial version of a

graphical user 1interface (GUI) at the server side. The

important GUI will be provided for the following purposes:

View of the server operation for the connection
process.

View of the server operation during file transfer.
This application will be provided 1in a separate

panel.

29

& Client

Command

Client is ready
Flease choose one ofthe commands at the command bar

‘ Close H Connect

Figure 8. Preview of the client’s user interface

& Server Process

Server is waiting for a client to establish the connection. .

Figure 9. Preview of the server’s user interface

2 Software and Development Tool
The test application and persistency APIs are written
using the Java programming language. JBuilder9 Java editor

environment is used to develop the application. For both

30

the server-side and the laptop/desktop client version, the
Java 2 Standard Edition (J28E) with the Java Development
Kit 1.4 (JDK 1.4) 1is wused. Persistency APIs for this
application are developed based on existing Java libraries.
The following systems are needed to run the

application with persistency API support:

e Server: Windows 98, NT, 2000 or XP operating system

and a Java Virtual Machine.

e (Client (desktop/laptop): Windows 98, NT, 2000 or XP
operating system, Java Virtual Machine and the Java
2 SDK1.4 installed.

3. Basic API and Program Interactions
The user must specify the preferred type of transport
protocol, which is either TCP or UDP, before starting the
data transfer. For this thesis project, the selected
transport protocol determines the type of application, file
or video transfer, the client and the server will perform.
As indicated in section A.1l, selecting TCP will result in
starting a file transfer application, and selecting UDP
will result in starting a video transfer program. The
specification of the type of the protocol must be done at

the beginning of the execution.
a. File Transfer

The file transfer from the server to the client
results from a client-side user request. The file size of a
desired file i1s first transferred to the client so it can
be used to display the progress bar. The server sends the
file as a series of packets (arrays of bytes or arrays of
frame) that the client collects until it receives all the
content of the file. The client application keeps track of

the number of packets received. In case of the physical

31

connection failure during the transfer, the persistency
APTI, which resides at the client side, is used to reconnect
until the ©physical connection 1is resumed. The new
connection state is returned to the client, and the client
continues to retrieve the rest of the packets until the end
of the file. Thus, the client doesn’t have to restart the
connection and receive the content of the application from
the beginning. If the physical connection is lost again,
the same process will be repeated as before.

b Client-server Communication Protocol

For the file transfer process, an application
layer communication protocol must be established. The
following figure shows the abstract of the communication

protocol with persistency API support:

Fersistency AF|
Client server
winls
Figure 10. The communication scheme with persistency API
support

The application starts with the server running
and waiting for the client at either port 5555 for TCP or
port 9999 for UDP connection. After the user starts the
client application and makes a selection of the type of
protocol to be used, the server will respond to the client

connection request without any user intervention.

32

After an initlal connection 1is established, a

file size request will be sent followed by the file content

request from the client to the server. The request packet

field is shown in Figure 11:

alieft,
client.

getting

Packet
Request Type Offset)
g yp Size
Figure 11 A reqguest message packet

After receiving the first request from the
the server sends the file size in bytes back to the
Then it waits for the client’s next action. After

the next request, the content of the file will be

sent as a series of packets to the client.

33

Client

' Client is running and
waiting for the user's
action,

e

User selects type of
application for the file
transfer and ask for a

file size

I
£

Get afile size and ready

for the next action. Ask

for file content from the
user's action

__‘_—‘_\—‘_-_‘—__‘—-—ﬂh

| S,

Gatl ready to
receive file

packets

T

Receiving file packets

| P
o

Client sense the
connection lost and
forward 1o the AP

POCESS

S
%

Receiving file packets

e

M

Close the connection

Server

Connect to the server
Ask for file size

sending the file siz€

Send the file request

Persistency API

Sending a series of
requests until sensing
the connection
rasumead. Make a
request to get the partial
file and return to the
client

e

Server is running and
waliting for the cliant

B4
g

Sarver replies sending
the file size and walls
for client's action

e

Recelve a reguest
and ready to
transfer file

packets

Slart sending file
packets

Close the connection

g %

Server establish the
connection. Receive a
new requaest and
continue o send the
rest of the file as a
series of packets until
the end of the file

Fi giire 12.

| T

Close the connection

34

The communication protocol with API support

If, during the transmission, a physical
connection failure occurs, the client side must detect it
by using a time-out mechanism. A distinction between the
packet loss and the physical connection failure can be
Jjudged by Java application exceptions. After detecting the
failure, the c¢lient will <call the persistency API to
reconnect to the same server. A series of reconnect
requests will be sent out until a reply from the server is
heard. After the connection is resumed, information needed
Lo reestablish a connection is sent to the server and the
client’s important parameters are being updated in order to
continue the session. The client will continue to receive
the rest of the data after the persistency API call 1is
returned. Each physical connection 1loss causes the same
partial transfer retrieval scheme to take place until the
client receives all the data packets and both the client
and server sides close the connection.

c. Activity Diagram

Figure 13 shows the activity diagram for APIT

support application

35

Persistancy AP

Figure 13.

%(Make a connect]

(Start receiving

Start state: Client started

o

[opan up the jconnection)]

[connect tothe server]

No
Yes
| Connection established |

[Ask for file size]

(File size retrlaved |

[Ask for fila transfar]

[Connegtion lost]

Yes

Packet recaived

[End gf file]

Mo

'es

(Close the connection }

[Get andther file]
Yas

ion to the sewer}

the file packets)_

Final state: Client closed

Start state: Server started

.

[Read filg content]

4)(Waiting for a dient }

tha client]
Mo

[Connact wi

Yes

Connection established

[Sendfile size]

Get fila raquest

(Start sendng the file packets)(—

Close the socket

[Connettion lost]

Yes

Packat sent

[End

Yes

f Close the connaction

[Get anothir request]
Yes

Ma

Final state: Server closed

The activity diagram for persistency API

d. Class Diagrams

The following,

Figure 14,

shows the relationship

between the classes for this thesis project:

36

]

Java.awt

BorderLayout
Corpopent
Container
Dimension
Gridlayout
Image
LavoutManager
Toolkit

]

java.io

BufferedReader
Butferedriter

File:

FilelnputStrearm
FileMotFoundException
FileReader
IOException
InputStream
InputStreamBeader
InterruptedliDException
OlatpatStre aem
OutputStresmriter
Prirt=tream

Reader

Lekiter

]

red

Client
ConnectionCortrol
FTPpacket

Server
ServerThread
SideoStream

]

Java.awt.evemnt

ActionEvent
Actionliztener
Lindowd dapter
WindowEvent
Iindawlistener

]

java.lang

Character
Exception

Integer
MullPointerException
MumberFormstException
Ohject

Runnabie

=tring

StringButter

System

Thread

ArrayindexOutOfBoundsException

]

Java.util

String Tokenizer

[

_l i :
e javax.swing
] Ican
ConnectException Imagelcon
DatagramPacket JButton
DatagramSocket JFrame
Inettddress . | JLahel
MoRouteToHostException [*= JMenu
Server=ocket — — —== IMenuBar
Socket _ Jhlenutern
SncketE;u:eptmn _ JoptionFane
SnckalmenmExcemlnn JPanel
LnknowynHostException JProgres=zEar
JEcrollPane
JTextires
Titner
Figure 14. The class diagram for API support application
In addition, Appendix B shows the client
desktop/laptop, the server and the API versions of the

37

class diagrams for the content of each class. Appendix B
also includes the supporting classes for UDP sessions,
which have RTPpacket and VideoStream classes at the client
side.

B. PERSISTENCY API IMPLEMENTATION

The main purpose of the application developed for this
thesis 1s to experiment and validate the persistent session
support used. The specific API for such support, called
the persistency API, 1s wused at the client side. An
instance of this class is one of client object members.

1. Overview

The ‘ConnectionControl’ <c¢lass 1s created to provide
persistent session support. It is coded to be an agent for
executing the reconnection process on behalf of the client.
This class has to be initialized at the first stage of the
application execution, after the client object 1s created.
It is also created as an object in order to cooperate with
the client object. Therefore, the client has a particular
function called fileControl(Client client, int port, String
host) that initializes the ConnectionControl object. In the
fileControl (), three parameters are used to initialize the
persistency API object; client is the client object, port
the initial communication port between client and server,
and host the IP address of the server. The command for
initializing the persistency API object is:

controlAgent = new ConnectionControl (Client client,
int port, String host);

The controlAgent i1s an instance of the persistency API
object. It needs to be initialized in order to coordinate
with the client’s object. For this initialization, there
are three arguments at the first tLime of the

initialization. These two latter arguments have to be set
38

in the initial wvalues and may be updated later on. The
ConnectionControl «class has a critical function for the
reconnection session called ReconnectProcess () . This
function tries to connect to the server until it
reestablishes the old session.

The 1important variables wused in the reconnection
session are the following:

e index — The parameter acts as offset of the data
file sent so far. It is always updated implicitly
during the data transfer session. It is retrieved
automatically by the persistency API in order to
initialize the reestablished session.

e host — The server IP address.

e port - The communication port for the file
transfer. It is static for the TCP session but it
is dynamic for the UDP session. The Java random
function 1s used to generate the dynamic port

number .

e client - The <client object. ConnectionControl
needs this handle to pass control back to the
client after connection is reestablished. The
client will continue the data transfer process.

e done - It is the logic to control the iteration
in order to make a new connection to the server.
It will be set to another wvalue after the
physical connection is resumed.

The main function of this persistency API, function

reconnectProcess (), 1s being called to do the following:

e Obtain the type of underlying protocol and the
offset of the file from the client at the point

before the connection failure.

39

e Send the new requests to the server until the
physical connection is recovered.

The additional functions in this persistency API class

are supposed to support the reconnection operation. There

are composed of the following:

e initialization() - This function initializes the
critical data members of the class

e setIndex(int index) - This function sets the
offset wvalue of the desired file. It is being
called during each packet transmission.

e open() - This function is the first step after
the resumed connection. It creates the input and
output streams in order to communicate with the
server.

o sendTCPRequest () and sendUDPRequest () — These two

functions are the final steps of the persistency

APT. The details are discussed 1n the next
section.
2. The Use of Persistency API

When the c¢lient detects the ©physical connection
failure via the Exception 1in Java, it calls the member
function reconnectProcess() of ConnectionControl:

controlAgent.reconnectProcess (String);

The argument for this function 1s a string, used to
indicate the underlying protocol. It can have the wvalue
“TCP” or “UDP”, depending on the type of tTransfer
application that is being used. This argument is important
to determine the appropriate new request to the server. The
following is the code segment for the reconnectProcess()

function:

40

114 public void reconnectProcess (String type) {

138 while ('done) {

140 try {

145 socket = new Socket (host, port);

152 open () ;

155 client.setParameters (socket, br, bw);
157 if (type.equalsIgnoreCase ("TCP")) {

160 sendTCPRequest () ;

162 } else {

164 try {

167 sendUDPRequest () ;

169 } catch (Exception e) {}

171 } // end if - else

173 done = true; // set the exit of the loop
175 } catch (UnknownHostException uhe) {

179 } catch (IOException ioe) {

187 } // end try - catch

191 } //end while

193 } // end reconnectProcess()

After being called, the persistency API starts a job
by sending a series of requests to the server. If there is
no reply, the new socket, line 145, will not be created and
yields the result 1in exception occurrence. In Java, if
there 1is an exception occurrence, the appropriate catch
statement will handle this error. Since it Jumps to the

catch statement, on line 179, due to the socket
41

establishment failure, 1t assumes no connection 1s resumed
and continues the iteration within the while statement,
line 138 - 191. After the connection 1is resumed, the
persistency API continues by opening the new stream between
the client and the server, in line 152, and then sets the
important parameters to the client object in order for the
client to continue the data transfer after the reconnection
completes. Next, based on the argument passed in the
function, a corresponding request, in line 160 or 167, is
sent to the server. After sending a request to get a
partial file from the server (the appropriate offset has to
be sent), this persistency API returns to the client. The
client will continue retrieving the partial date at the
point it lost the connection.

For clarification, after establishing a new connection
with the server (below line 145), the further process in
which the API supports the recovery of the file transfer
can be categorized into two groups as follows:

a. Using Persistency API for TCP

After the new connection is established, the
persistency API 1is trying to make a request to get the
partial file. Therefore, there are two Lypes of
applications. In this <case, the text file 1s being
retrieved. From the code segment shown earlier, if the main
funeLion or the persistency APT, reconnectProcess (),
receives “TCP” as argument, it will force the i g
statement to call sendTCPRequest (), on line 160, to get the
text file and the file transfer session will be continued
right after this command. The following is the pseudo code

used for sending the new TCP request to the server:

238 private void sendTCPRequest () {
42

240 String textOut = "/get " + index;

247 client.send (textOut);
249 '} // end sendRequest ()

The parameter ‘index’ 1s already updated so this
function will use it automatically. It is an offset of the
desired file where the server should start the transfer in
the reestablished connection. The function sendTCPRequest ()
uses the client’s existing function to send the reguest
after establishing the new connection with the server in
order to have the client continue the file-retrieve Jjob
after the control 1is returned to the client. For the TCP
case, API returns to the client immediately after sending
the new request. It assumes that the time of returning to
the client is faster than the period of the request, which
is sent to the client combined with the period packets that
travel from the server to the client. The service continues
from the point it returns and the c¢lient continues to

receive the rest of the file.

b. Using Persistency API for UDP
For the case that reconnectProcess/() function
gets “UDP” as an argument from the c¢lient, the 1‘if’

statement of line 157 will evaluate the logic to false and
sendUDPRequest () on line 167 will be called.
sendUDPRequest () is the function needed to send the new
request for UDP session. The following is the code segment
used for sending the new UDP request to the server:

256 private void sendUDPRequest () throws Exception {

262 int newRTPPort = client.randomRTPPort () ;

43

267 RTPsocket = new DatagramSocket (newRTPPort)

269 client .setRTPSocket (RTPsocket);

270 client .setRandomRTPPort (newRTPPort) ;

273 client.send ("/Setup " + index + "™ " +
newRTPPort) ;

274 client.send RTSP request ("PLAY");

278 client.timer.start(); // continue the timer

after sending the new request

282 '} // end sendUDPRequest ()

Line 262 generates a new RTP port for receiving
the partial video file from the server. In order to avoid
the packets from different sessions colliding at the same
port, a random function is used to generate a new port
number. The new RTP socket using the new RTP port needs to
be assigned to the client object in order to achieve
service continuity because the control will return to the
client object after a new connection to the server is
established.

The parameter ‘index’ 1s also an offset of the
desired file and already updated. Java timer class, which
is used control the file transfer of the video packets, is
stopped when the connection failure occurred. Thus, this
function needs to be reactivated after the connection is
resumed for the next video packets transfer session. As a
result, i1t has to be called again after the connection is
resumed. After the new request from the API has been sent,
the API returns the functionality back to the client by

using the start() method, line 278 of ReconnectProcess(),
44

in which the Java timer is —reactivated. The service
continues from the point it returns and the client
continues to receive the rest of the file.
G APPLICATION USAGE GUIDE

£l Client

The client starts the application by waiting for

actions from the wuser. The user must select one of the

options from the drop down menu as shown in Figure 15.

& Client

Command |
Get Size
Get File TCP PERSISTENT nands atthe command har
~ Get File UDP PERSISTENT
Close Connect
Figure 15. Client’s selection panel

After the button connect i1s pressed after choosing the
selection, the client program automatically connects to the
server. The client first sends the file size request. After
getting the file size, another panel will show up and wait
for the user’s next actions to retrieve the file.

After the user presses the “Get Data” button for TCP

connection or the “pPlay” button for UDP connection, the

45

client starts to receive the file packets from the server
and displays the content on the panel until the end of the
file. Figures 16 and 17 show the preview of the second

panel for TCP and UDP respectively.

& Client

Get Data Close

FPigire 16 Client’s second panel for TCP session

46

& Client UDP Process

Play Pause Close VDO

Figure 17. Client’s second panel for UDP session
The following figures show the second panels while
retrieving the data from the server.

& Client
UNICODE 2.00.2600.1106 Calling process: COANINDOWSISystertd
A2Umsiexec exp ===
w31 (o) (4:F0): Resefting cached policy walues
w31 (c) (64.F0): Machine policy value 'Tebug'is 0
w3l (c) (64:.F0) =" RunEngine:

e Product CWYIMDOWSDownloaded Installations\DAE
mMOM Tools 2.47daemon.msi

R Action:

FEEEE Commandling; FEEE
w31 (c) (F4:F0): Machine policy value Tisahlelserlnstalls'is 0
mS1 (c) (64.F0); SOFTWARE RESTRICTION POLICY, Verifying pack
age --= "TUANINDOWS\Downloaded Installations\DAEMON Tools 3
4daemaon.msi' against software restriction palicy
mMS1 () (B4 FO): Mote: 1: 2262 2 ODigitalSignature 3 -21472870328
mS1 (e (F4-FO): SOFTWARE RESTRICTION POLICY: CONIMDOYYS
Diowenloaded Installations\DAEMON Tools 3. 47idaemon. msiis noj—|

Get Data Close
Figure 18. Client’s second panel during TCP transmission

47

& Client UDP Process

Play Pause, Close VDO

Figure 19. Client’s second panel during UDP transmission

If any connection failure occurs, the second panels
will be paused automatically and the reconnection process
is undertaken without any user interaction. When the
connection i1s reestablished, this panel resumes showing the
content of the file from the point it paused.

2. Server

The server starts the application by waiting for the
client to connect to it. After establishing the connection,
a server thread is created to handle the transfer session
with the client. The main server process, in the mean time,
can accept other client connections (maximum number of
clients is 30). The following figures indicate the server

process:

48

Mew connection is established!

oK

Figure £0. Information message from the server

% Server Process

Server is waiting for a client to establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a client to establish the connection...

Figire 21. The server process

After being connected, another information panel 1is
popped up in order to show the process of the transmission.
These panels are displayed and updated throughout the
process until the end of the file. The following figures
show the transmission process using TCP and UDP as an

underlying protocol respectively:

49

& TCP Counter

Character # 5671, s is sent

Figure 22. The server’s transmission process for TCP session
% UDP Counter I_I_I_
Send frame # 24
Figure 23. The server’s transmission process for UDP session

50

V. TESTING

This chapter describes the testing of the data
transfer application developed, including the test network
description, the wvarious scenarios that were used, and the

general results of the testing.

A. TESTING NETWORK DESCRIPTION

The testing of the API support application required
the installation of a basic network that simulates several
scenarios in which all the application components’
operations can be tested.

1. Practical Considerations and Limitations

e Home-based wired networking was used for data

Lransmission between end users to simulate a small

network scenario.

e Both wired and wireless network at the Naval
Postgraduate School (NPS) were used to simulate the

Internet network environment.

e During the test, the IP address of the server was

assumed to be static.

e A gsufficient number of wired clients and wireless
enabled devices were used to test the requirements
of the thesis research. It is not our goal to test
the wvolume of client traffic that the application

can handle.

e TIn most of the testing scenarios, the additional
“delay” during transmission is added to reduce the
speed of the file transfer and the reconnection
process. That means the server’s and client’s

program response was slowed by the use of a “delay”

51

function so that i1t 1s easier for the wuser to
observe the communication protocol features and

behavior during the test scenarios.

e The connectivity failures necessary to test the
protocol responses were manually caused by either
unplugging the network connection in the wired
devices (mainly servers), or by disabling or
removing the wireless adapters from the wireless
enabled client devices.

2 Testing Network

As Figure 24 shows, for the small network scenario,

the testing network consists of a server, a client and a
switch connecting directly for a wired environment. For a
wireless environment, they are connected via wireless
adaptors through a router that also connects to the
Internet. The server in both the wired and wireless setup

has the static IP address.

Ry.
Switch)

—\ \

Client \ W Server

WirelessRouter

Figure 24. The home-based networking architecture

52

For the simulated WAN network, the client is
connecting to the server wusing wired connection via a
switch, and wireless connection via a wireless router. As
shown 1in Figure 25, the client 1s connected to the server
via the NPS network for both wired and wireless WAN

testing.

RJ-45

NPS Network

802 4,
b 475
5 Server
Client WirelessRouter
Figure 25. The NPS-based WAN network setup
B. TESTING SCENARIOS

Several tests were developed to emulate the wvarious
problems that might be encountered while running the
application. These scenarios are used to ensure that the
goals of the thesis research were fulfilled. The following
descriptions 1list all the testing scenarios and associate
them with a reference code so that they can be referred
later in the result description without naming them
explicitly. The reference codes start with a group of
letters that indicates the general scenarioc type and ends
with a counter number. The reference code part that refers
£o the scenario’s type is one of the following:

e SUIS : Server User Interface Scenario. Situations that
can happen during the interaction of the server’s user
with the available user interface.

e (CUIS : Client User Interface Scenario. Situations that
can happen during the interaction of the client’s user

with the avallable user interface.

53

e APIS

API Scenario. Situations that API does during

the establishment of the new connection for the client

to the server.

1. Scenario Reference Code and Scenario’s
Description
SUIS-1 The server accepts the connection and waits

for the request from the client.

SUIS-2 The server sends the data packets in a TCP
session.

SUIS-3 The server sends the video packets in a UDP
session.

SUIS-4 The sgserver accepts the new connection and
disregards the previous connection.

CUIS-1 Failure 1in the type of protocol selection
when it is necessary to select the protocol
used for transfer.

CUIS-2 Starting download in a TCP session.

CUIS-3 Starting download in a UDP session.

CUIS-4 Detecting a physical connection lost while
downloading the packets from the server.

APIS-1 During the file transfer, the connection 1is
lost but is restored again after a short
period of time. The ConnectionControl object
performs the task instead of the client.

CUIS-5 Display confirmation to the user Dbefore
closing the current session.

C. TESTING RESULTS
This section explains how the network components

responded to

each of the scenarios and how the user

interface helped the user to be informed if a file transfer

54

failed during its operation. The reference codes listed in

Section A are used to refer to each scenario.
e SUIS-1. The sgerver accepts the connection and waits
for the request from the client. The result was that

the program informed the wuser via a message as

follows:
: ﬁ Hew connection is established!
OK
Figure 26. The server establishes the connection

& Server Process

Server is waiting for a client to establish the connection...

Server accepted
Thread #1 created!

Server is waiting for a client to establish the connection...

& TCP Counter

Character # 8736, A is sent

FPigire 27 The server is ready for the TCP file transfer

55

& Server Process

Sener iswaiting for a client to establish the connection...

Sener accepted
Thread #1 created!

Sener iswaiting for a client to establish the connection...

& UDP Counter I_I_I_

Send frame #

Figure 28. The server is ready for the UDP file transfer

e SUIS-2. A panel displaying the text sent informs the

user of the progress for a TCP session.

& TCP Counter

Character # 8736, A is sent

Figure 29. The proxy server process for a TCP session

e SUIS-3. A panel displaying the frame number sent

informs the user of the progress for a UDP session.

& UDP Counter I_I_I_

Send frame # 19

Figure 30. The proxy server process for UDP session

e SUIS-4. This is the result from a lost connection. The
server accepts the new connection and disregards the
previous connection. The new thread 1is created to

handle the new communication.

56

% Server Process I—I—I_

Sener is waiting for a client to establish the connection...

Sener accepted
Thread #1 created!

Sener is waiting for a client to establish the connection...

Sener accepted
Thread #2 created!

Removing thread# 1

Thread# 1 remaoved!

Sener is waiting for a glient to establizsh the connection...

Exit

Figure 31. The server process after new connection

CUIS-1 The client user needs to select the type of
protocol to be transferred in order to avoid an error.
The panel in Figure 32 appears if the user tries to

connect before selecting the type of protocol.

Button Error!

Please choose one of the options before hitting the connect button

K

et |

-

Figure 32. The response of client side for CUIS-1

CUIS-2. A window displays the content that the client
received during a TCP session (as shown in Figure 18
in chapter 4 section B.2.a).

CUIS-3. A window displays the wvideo content that the
client received during a UDP session (as shown in
Figure 19 in chapter 4 section B.2.a).

57

CUIS-4. When connection failure 1is detected, a GUI 1is
displayed to alert the user, and user action is needed
for the client to begin the reconnection process. The
following figures show the sequence of panels

displayed to the users at the client side:

Socket closed!

Figure 33. The information message of the client (1)

Mext Process

The next job is to reestalish the session

Figtlire 34. The information message of the client (2)

58

€5 JBuilder 9 - C:/CHAYUTRA{ThesisiConnections/RCD/RCDfsrefredfideaStream. java
File Edit Search Wiew Project Run Team Wizards Tools Whdow Help

NEE-BEI S| -~ %l 4 (M THRBD-[E) -K-lo-dl-¢3 @

|’\‘]_—|31 e = RCDjpx - XE& Cllem] x &Canme:‘tlomComrnll x|t HTPpackEtI x|84 ServerI x &3 ServerThread x|t VMEUWE&”’I]
2 = _ OIS T COLs
RCD jox - i = |
[+ <Project Sources Ry
(- red 3
@ &I Standard Doclet public VideoStream(5tring filename) throws Exception{
e
:_icllent.Java #finit variables
}?EEE”EC‘.W.”_CWW'JWa x| 7 fis = new FileTnputitream|filename):
] frame nb = 0;
'Impor‘ts
- @ VideoStream 10} // end constructor
% VideoStream(String filename)
oo % getnextirame(oyte]] frame) i £
i ‘i} fis 1 * Get the next frame
H *
Fil:]
o fiaine b 1 * [@psram frame array of byte of the wideo
1 *
* Breturn the next. frame as an arraw af hwte snd the size af the frane =
G, 1]
VideoStream java Inzert B9:1 BT
Source] DES\gﬂ] Bean UMLJ Doc His‘turyl
GOL FIP [HCREC WILH Sequtil ¥ 50 [INesCaly so00 IS, UL Cype U Lj
Got RTP packet with Seqifum # 31 Time3tamp 3100 ms, of type O

Got RTP packet with Seqium # 32 TimeStamp 3200 ms, of type 0O
In timer Inter:y Prion caught: iged out

ing to establish the connection...
Index to read file = 32

No connection resumed. 3till trying to connect to the
No connection resumed. Still trying to connect to the
No connection resumed. Still trying to comnect to the
No connection resumed. Still trying to connect to the
No connection resumed. Still trying to connect to the
No comnection resumed. 3till trying to connect to the
No connection resumed. Still trying to connect to the
connection resumed. Still trying to comnnect to the

P Process g

x| cnentj | Client | | Cliert x‘cnem\ =0
Figure 35. The persistency API’s reconnection process

e APIS-1 During the file transfer, the connection 1is
lost but is restored again after a short period of
time. The client attempts to reconnect to the server
by calling the persistency API. The image progress
panel of the user interface, which displays the image
or file download progress, stops updating until the
client reconnects to the server and begins retrieval
of the rest of the file. Figure 36 shows the attempt
of the API program to connect to the server as well as
the paused state of the user 1interface during
connection failure. Figures 37 and 38 show the message
when the connection is resumed, followed by the
messages showing that the process 1is continued from

the point where the connection was lost.

58

& Client ~BEX

==‘erbose logging stared: 9222004 10:29:07 Build type: SHIF =~
LIMICODE 20026001106 Calling process: CUWIRDOWVESyste %
A2msiexec exe ===

MSI {c) (64:F0i: Resetting cached policy values
MSI {c) (64:F 0 Machine paolicy value 'Dehbug'is 0
MSI {c) (64:F 0 = RunEngine:

== Product: COWINDOWS\Downloaded Installations\DAB
MOM Tools 3.47daemon.msi

R Action:

T CommandLing: TR

MSI {c) (64:F 0 Machine palicy value 'Disablelserinstalls'is 0
MSI (ci (64:.F0) SOFTWARE RESTRICTION POLICY: Verifiing pack]
age --= 'CMYIMNDOWS\Downloaded Installations\DAEMOMN Tools 3
47 daemon.msi' against sofhware restriction palicy

MSI (o) (64:F0): Mote: 1; 2262 2: ODigitalSignature 3 -2147 287038

MSI () (64:F0): SOFTWARE RESTRICTICN POLICY: COMAMINDOWS
Downloaded Installations\DAEMOM Tools 3.47daeman.msiis nof—|

Pause Close

Figure 36. The client’s user interface during connection
failure

Client Status

Connection resumed!!

Figure 37. The message from API showing the status (1)

Client Status

The transmission is continuing from the point it lost!

Figure 38. The message from API showing the status (2)

60

CUIS-5 There are two panels at the client side running
at the same time: the client’s control panel (Figure
16) and the client process panel (Figure 18 for TCP or
Figure 19 for UDP). Both panels are waiting for the
action from the user. While the client process is idle
or still running, if the user wants to quit at any
time, the application will ask for confirmation before
leaving the application. The action from pressing the
“close” Dbutton from one of the client’s panels will

yield the result shown in Figure 39.

Ask for confirmation

.ﬁ Do vou really want to close?

Yes || No

Figure 39. The final confirmation message

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

VI. CONCLUSION AND FUTURE WORKS

A. SUMMARY

The goal of this thesis research was to design an API
to support persistent session services to various
applications using TCP or UDP as an underlying protocol,
and to implement an application that uses and demonstrates
the operation the persistent session service. Other
proposed file transfer protocols for service continuity
were examined to study their characteristics and features
used to recover from a connection failure.

The communication program implemented is a client-
server application that supports multithreading on the
server gide and can dynamically recover from data transfer
failure due to intermittent physical connection loss. This
file recovery feature 1s achieved Dby designing and
implementing the APT at the client side. The
ConnectionControl object, when called Dby the <client
application, tries repeatedly to connect to the server and
resume the data transfer session from the point where
connection failure occurs.

The application was designed with user interfaces that
make the dynamic partial file retrieval wvisible to the user
in real time. Special user interface panels are created to
show the file transfer progress and display the data
received.

The main scenario tested during the communication
application testing was when the connection failed during
the file transfer and the client program successfully
reconnected when the physical connection was restored. Our

test also validated the file management and the

63

multithreaded behavior at the server side. Both wired and
wireless network environments were used 1in testing at the
client side. Users at the client side were able to
visualize the file transfer progress and control the file
transfer options (request file, stop downloading, or choose

to continue previous failed file transfers).

B. FUTURE WORK

Extending the research scope of this thesis and the
application developed in support of it, there are issues
that raise opportunities for further research. They
include:

1. Communication Protocol Design

Based on the APIs developed in this thesis for

specific applications, further research could be focused on
enhancing the API to have more capability. Some key areas
towards this direction could be:

e Support a fully mobile networking environment.
Further enhancement in the API can be supported for
portable devices with respect to data session
survivability in a wireless environment. The API may
have more capability but should be small enough to

be more suitable for moblle device.

e Support for migration of UDP sessions. As discussed
in Chapter II, migration in TCP has been studied.
Further research <can be done on enhancing the
service continuity for both kinds of protocol.

e TLower level API. The API may be written using the
concept developed in this thesis but implemented at
the lower level of the network stack to achieve

better performance.

64

2.
In
further

Application Development

application-level development, the following
work can be done:
Extending the persistency API class library. Create
a class or additional API library for the persistent
connection protocol that application developers can
use to develop new applications. This proposed API
should be able to support generic applications at
the application layer, e.g., it supports all
applications using either TCP or UDP as the
underlying protocol.
Developing additional applications that use
persistent data sessions. Examine other types of
applications where applying the persistent data

sessions can be useful.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX A. CLASS SOURCE CODE

/**

* Title: API Development for Persistent Data Sessions
Support

Description: Application client

Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

X % o X% %

import Jjava.io.*;

import Jjava.net.*;

import Java.awt.*;

import Java.awt.event.*;
import Jjavax.swing.*;
import Jjavax.swing.Timer;

/**
* This i1s part of the connection process which is connect
to the server.
* This client is intended to connect and receive the data
from the server
* using two different protocols; TCP and UDP. This class
is intended to
* use socket programming for both types of protocols and
graphic user
* interface on order to interact with the user.

* Expected server protocol support: Both TCP and UDP

applications
*

* @author CPT Chayutra Pailom THA
*/

public class Client extends JFrame implements Runnable {

//
// Data Members:

//

//———— Global variables for TCP or UDP process —-———/

/** Runnable TCP or UDP object */
private Thread TCPThread, UDPThread;

67

/** The physical connection control process */
private ConnectionControl controlAgent;

/** Socket for TCP and RTSP request */
private Socket socket;

/** The buffer for input stream */
private BufferedReader br;

/** The buffer for output stream */
private BufferedWriter bw;

/** The IP address of the server */
private String host;

/** Port to communicate with the server */
private int port;

/** Logic to control the redundant data manipulation */
private boolean knowSize;

/** Logic for doing TCP or UDP process */
private int connectionCase;

/** The critical variable for reconnect process for
both TCP and UDP */

private int index;

/** Connection status */
private boolean connect;

/)=mmmm = GUI for TCP ——-—-—————————-— /

/** JFrame for TCP process */
private JFrame k;

/** Container to be added onto main frame */
private Container container;

/** The status bar showing how far of TCP process */
private JProgressBar progressBar;

/** The area to show the process and the TCP data */
public JTextArea textArea, textAreal;

68

/** The
private

/** The

button to shutdown the visibility of the GUI */
JButton buttonClose, buttonClose3;

button to start retriving the data from the

server */

public JButton buttonConnect,

/** The
private

/** The
private

/** The
private

/** The
private

/** The
private

/** The
private

/** The
for
private

/** The
private

/** The
private

/** The
UDP
private

/** The
private

/** The
private

buttonbata;

panels for containing small functions of GUI */
JPanel TCPPanel, buttonPanel, buttonPanel3,
textPanel, textPanel?2;

container for menu commands */
JMenuBar menubar;

container for menu items */
JMenu menuCommand;,

function for scrolling the text area */
JScrollPane scrollPane, scrollPane?2;

items to be chosen for data manipulation */
JMenultem size, filePersistent, filePersistent?2;

GUI for UDP

main frame of the UDP process */
JEFrame £,

button to shutdown the visibility of the GUI
UDpp */
JButton buttonClose?2;

button to setup and start the video process */
JButton playButton;

button to pause the video process */
JButton pauseButton;

panel for containing the small functions for
GUI */
JPanel mainPanel;

panel contained functional video commands */
JPanel buttonPanel?2;

label for the wvideo */
JLabel iconLabel;

69

/** The video to be shown */
private Imagelcon icon;

A TCP Variables —-—-————-—————-——————- /

/** Size of the desired data used for progress bar */
private int fileSize;

/** The timeout constant for socket */
private final int SOCKET TIMEOUT = 5000;

/)= RTSP variables ——-——-—-—-——-——————-—- /

/** Boolean stand for the state */
private boolean ready;

/** Sequence number of RTSP messages within session */
private static int RTSPSegNb = 0;

/** End of command */
private final static String CRLF = "\r\n";

/** RTP payload type for MJPEG video */
private static int MJPEG TYPE = 26;

A RTP variables -—-—-——-—-—-—-——————-— /

/** UDP packet received from the server */
private DatagramPacket rcvdp;

/** socket to be used to send/receive UDP packets */
private DatagramSocket RTPsocket;

/** port where client will receive the RTP packets */
private static int RTP_RCV _PORT = 9999,

/** new port where the client will receive the RTP
packets */

private int newRTPPort;

/** timer used to recelve data from the UDP socket */
Timer timer;

70

/*

* buffer used to store data received from server */

byte[] buf;

//
//
//

/*

*

*

*

Default constructor

* @param pHost - IP address of the server
* @param no - port number of the server to be

connected

*/
public Client (String pHost, int no) {

// Variables initialization
host = pHost;

port = no;

knowSize = false;
connectionCase = 0;

connect = false;

/** Initialize the control process object.

* must call in order to avoid incomplete physical
connection */

fileControl (this, port, host);

/=== Client GUI Process —-————-——--——-= /

// Main frame attributes

container = getContentPane()
container.setLayout (new BorderLayout ());
this.setTitle ("Client")
this.setSize (400, 400);
this.setLocation (500, 0);

// buttons, labels and panels
buttonClose = new JButton("Close");
buttonConnect = new JButton ("Connect");
buttonPanel = new JPanel () ;

textPanel = new JPanel();
buttonPanel .add (buttonClose) ;
buttonPanel . add (buttonConnect) ;

71

// menu items for the client commands

size = new JMenultem("Get Size");

filePersistent = new JMenultem("Get File TCP
PERSISTENT") ;

filePersistent?2 = new JMenultem("Get File UDP
PERSISTENT") ;

// menu for the items to be added
menubar = new JMenuBar () ;
menuCommand = new JMenu ("Command") ;
menuCommand.add (size) ;
menuCommand.add (filePersistent) ;
menuCommand.add (filePersistent?2);
menubar . add (menuCommand) ;
this.setJMenuBar (menubar) ;

// Initialize handlers
ButtonHandler buttonHandler = new ButtonHandler (),
MenuHandler menuHandler = new MenuHandler (),

// action listeners for buttons
buttonClose.addActionlListener (buttonHandler);
buttonConnect .addActionlListener (buttonHandler) ;

// action listeners for menu commands
size.addActionlListener (menuHandler);
filePersistent.addActionListener (menuHandler) ;
filePersistent2.addActionListener (menuHandler) ;

// text components

textArea = new JTextAreal();
ftextArea.gsetLineWrap (true) ;
textArea.gsetEditable (false);

scrollPane = new JScrollPane (textArea);;

// border layout placements
textPanel .setlLayout (new BorderLayout ()) ;

textPanel.add(scrollPane, "Center");

container.add (textPanel, "Center");

container.add (buttonPanel, "South");

setVisible(true),; // set the visibility of the main
GUI

textArea.append ("Client is ready\n");
textArea.append("Please choose one of the commands
at the command bar\n");

72

// frame for TCP GUI
k = new JFrame ("Client TCP Process");

// add frame window attribute
k.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0);
}
1)y

// TCP process frame attributes
k.setTitle("Client")
k.setSize (400, 400);
k.setLocation (0, 0);

// buttons and panels

TCPPanel = new JPanel (),

buttonPanel3 = new JPanel ();
textPanel?2 = new JPanel () ;

buttonData = new JButton ("Get Data");
buttonClose3 = new JButton("Close™);

// action listeners for buttons
buttonClose3.addActionlListener (buttonHandler) ;
buttonData.addActionlListener (buttonHandler) ;

// text components

textArea?2 = new JTextAreal);
textAreal2.setLineWrap (true);
tLextAreal2.setEditable (false);

scrollPane?2 = new JScrollPane (textArea?2);
progressBar = new JProgressBar (),

// Add buttons into button panel
buttonPanel3.setlLayout (new GridLayout (1, 0));
buttonPanel3.add (buttonbData)
buttonPanel3.add (buttonClose3);

// border layout placements
textPanel?2.setLayout (new BorderLayout ())
textPanel?2.add(scrollPaneZ?2, "Center");
textPanel?2.add (progressBar, "South");,
TCPPanel .setLayout (null);
TCPPanel .add (textPanel2, "Center");

73

TCPPanel .add (buttonPanel3, "South");

// panel attributes
textPanel?.setBounds (0, 0, 380, 315);,
buttonPanel3.setBounds (0, 310, 380, 50);

// Add TCP main panel into JFrame
k.getContentPane () .add (TCPPanel,
BorderLayout .CENTER) ;

/)=mmmm = UDP GUI Process —————————————--— /

// frame for UDP GUI
f = new JFrame ("Client UDP Process");

// add frame window attribute
f.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0);
}
1)y

// buttons and panel initialization
playButton = new JButton ("Play");,
pauseButton = new JButton ("Pause");,
buttonClose?2 = new JButton ("Close VDO");
mainPanel = new JPanel ();

buttonPanel? = new JPanel ();

// Add buttons into button panel
buttonPanel2.setlLayout (new GridLayout (1, 0));
buttonPanel?2.add(playButton)
buttonPanel?.add (pauseButton);
buttonPanel?.add (buttonClose?2);

// Add action listener for each button
playButton.addActionListener (new

playButtonListener()), // create object play
pauseButton.addActionListener (new
pauseButtonlListener()),;// create object teardown

buttonClose?2.addActionlListener (buttonHandler) ;
// Image display label

iconlLabel = new JLabel ();
iconlLabel.setIcon(null);

74

// frame layout
mainPanel.setLayout (null) ;
mainPanel.add (iconLabel);
mainPanel.add (buttonPanel2);

// Set boundary
iconLabel .setBounds (0, 0, 380, 315);
buttonPanel?.setBounds (0, 310, 380, 50);

// Add main panel into JFrame

f.getContentPane () .add (mainPanel,
BorderLayout .CENTER) ;

f.setSize (new Dimension (390, 400));

// init timer for video

timer = new Timer (20, new timerListener()); //
create object timer

timer.setInitialDelay (0);

timer.setCoalesce (true) ;

//allocate enough memory for the buffer used to
receive data from the server
buf = new byte[15000];

} // end constructor

//
// Public Methods:

//

* Runs a thread, it has to be run as a thread in order
£o achieve the GUI.

* There are two types of the protocols; TCP and UDP,
depending on the

* connectionCase. When a physical lost occurs, in
order to achieve

* the persistent data sessions, the client will ask
the server to send

* data again by using the previous parameters. It
seems to be non-persistent

* due to the new establishment of the connection but
the idea of persistent

* connection will be used instead.

75

public void run() {
if (connectionCase == 1)
TCPStart (),
else
UDPStart (),

} // end run/()

/**
* Method to close all socket variables
*/
public void close () {
try {
if (br !'= null) {
br.close();
} // end if
if (bw !'= null) {
bw.close () ;
} // end if
if (socket '= null) {

socket .close();
} // end if

} catch (java.io.IOException io) {

JOptionPane.showMessageDialog(this, "Input /
Output error occured, you should restart",

"Socket closed error",
JOptionPane. INFORMATION_MESSAGE) ;

} // end try - catch

} // end close()

/**
* Method to open all socket variables
*
* @return boolean true 1f the connection can be
established otherwise false

76

*/

public boolean open() {
try |

System.out .println("Trying to connect to the

server....");
/** use for both TCP request and RTSP request

(for later UDP)

* automatically connect to the host (server) */
socket = new Socket (host, port),; // ==
System.out .println ("After create socket,

connection ==> " + gocket.isConnected());

connect = true;

// initialize buffer for both input and output
streams, use socket for initialization
br = new BufferedReader (new
InputStreamReader (socket .getInputStream())),
bw = new BufferedWriter (new
OutputStreamWriter (socket .getOutputStream())),

} catch (UnknownHostException uhe) {

JOptionPane.showMessageDialog (this, "Unknown
server, check the address");
return false;

} catch (IOException ioe) {

JOptionPane.showMessageDialog (this, "Cannot
connect to the server, server may be down or
cable unplugged.", "Socket Error!'",
JOptionPane.INFORMATION_MESSAGE);

return false;
} // end try - catch
return true; // if success

} // end open{()

/**

* Method to send the message to the server
*

* @param message - the string request

77

*/

public void send(String message) {
try {

// write the message to the server using buffer
writer

bw.write (message) ;

bw.newLine () ;

bw.flush () ;

} catch (SocketException se) {

// true if the socket successfully connected to
the server
if (socket.isConnected()) {
JOptionPane.showMessageDialog (this, "The
connection still established!");
} else {
JOptionPane.showMessageDialog(this, "Other
problems!");
} // end if - else

} catch (Exception e) {
JOptionPane.showMessageDialog (this,
"In send, Check if connected to server",
"Sending Error!", JOptionPane.ERROR MESSAGE) ;
close (),
} // end try - catch

} // end send()

/**

* Method to send the request to the server
*

* @param request type - the UDP request
*/
public void send RTSP request (String request type) {
try A

// write the message to the server using buffer
writer

78

bw.write (request type + " Cseqg: " + RTSPSegNb +
CRLF) ;
bw.flush{()

} catch (Exception ex) {

System.out .println ("in send Exception caught:
+ ex);
System.exit (0);

} // end try - catch

} // end send RTSP request ()

/**
* Method to set the parameters after getting new
connection

@param socket - the TCP or RTSP communication socket
@param br - buffer for input stream

* @param bw — buffer for output stream

*/
public void setParameters (Socket socket, BufferedReader
br, BufferedWriter bw) {

X % ot

this.socket = socket;
this.br = br;
this.bw = bw;

} // end setParameters

/**
* Method to retrieve the wvariable host
*

* @return host - the IP address of the host
*/
public String getHost () {

return host;

} // end getHost ()

/**
* Method to retrieve the constant RTP RCV PORT
*
* @return RTP_RCV PORT - the RTP destination port
*/

79

public int getUDPPort () {
return (RTP_RCV PORT);

} // end getUDPPort ()

/**

* Method to get the random RTP port
*

* @return - random RTP port number
*/
public int randomRTPPort () {

return ((int) (Math.random() * 10000)) ;

} // end randomRTPPort ()

/**

* Method to set the random RTP port
*

* (@param newPort new RTP port numner
*/
public void setRandomRTPPort (int newPort) {

newRTPPort = newPort;

} // end setRandomRTPPort ()

/**

* Method to get the random RTP port
*

* @param RTPsocket - new RTP socket
*/
public void setRTPSocket (DatagramSocket RTPsocket)

this.RTPsocket = RTPsocket;
System.out .println ("New RTP socket set!");

} // end setRTPSocket ()

//
// Private Methods
//

80

/**
* Connect to the server either TCP or UDP
* This client will not be terminated unless
* the appropriate button will be pressed.
*
* Five steps to communicate with the client are
* Step 1 - Set up a client socket to send reguest
to the server
* Step 2 - Set up the control agent
* Step 3 - Open appropriate streams for desired
data exchange
* Step 4 - Communicate with the server via streams
* Step 5 - Close the opened socketconnection
*/
/**

* Persistent TCP connection
*/
private void TCPStart () {

// varilable initialization

index = 0;

String text = "'";

boolean done = false;

if ((knowSize == false) && (connect == false)) {
open(); // open the port for the TCP

connection
textArea.append ("Connected\n") ;

// get the size of the data in order to
manipulate the progress bar
fileSize = findSize (),
} // end if

while ('done) {

System.out .println("In while loop");

String textOut = "/get " + index;
System.out .println ("Command —--> " +
textOut) ;

System.out .println ("Regquest to server
sent!™);

81

send (textOut); // send the request to the
server

int spaceCounter = 0;
char[] testChar = new char[4];

// receive the content of the file until EOF

while ('socket.isClosed()) {
try {
try {

socket .setSoTimeout (SOCKET TIMEOUT
); // set timeout for the TCP
socket

} catch (SocketException se) {

JOptionPane.showMessageDialog (this,
"The connection has lost, error
in the underlying protocol™,
"Timeout!",
JOptionPane.ERROR_MESSAGE);

JOptionPane.showMessageDialog (this,
"The next Jjob 1s to reestalish
the session, "Next Process",
JOptionPane.INFORMATION_MESSAGE);

close(); // close all sockets
before doing reconnection

// if the connection is lost by
timeout, it will reconnect
automatically

controlAgent .reconnectProcess ("TCP") ;

} // end try - catch

text = br.readLine(); // read the
incoming response from the server

System.out .println ("Received ==> " +
text + " , index = " + index);

82

// very important for retrieving the
rest of the data
controlAgent.setIndex (index) ;
if (text.equalsIgnoreCase("")) {
System.out .println ("spaceCounter =
" + spaceCounter) ;
spaceCounter++;

if (spaceCounter == 3) {

textArea?.append ("\n") ;
spaceCounter = 0;

} // end if
} else(

textAreal.append (text) ;
spaceCounter = 0;

} // end if - else
if (text '= null) {
index++; // increment the
counter
progressBar.setValue (index); //

set the progress bar

// End of file
if ((index) == fileSize) {

textArea?.append ("\n") ;

JOptionPane.showMessageDialog
(this, "End of File!'");

done = true; // set the logic
to exit the outer loop
break; // exit the inner loop

} // end if

} // end if

83

} catch (NoRouteToHostException nrth) {

JOptionPane.showMessageDialog (this,
"The route to host!'");,
JOptionPane.showMessageDialog (this,
"The next job i1s to reestalish
the session")
} catch (ConnectException ce) {

JOptionPane.showMessageDialog (this,
"The connection was refused
remotely") ;

JOptionPane.showMessageDialog (this,
"The next job i1s to reestalish
the session")

} catch (SocketException se) {

System.out .println("The error is
===> " 4+ se.getMessage());

close(); // close the socket and I/O
streams to guit inner loop

JOptionPane.showMessageDialog (this,
"The connection has lost, error
in the underlying protocol",
"Socket closed!",
JOptionPane.ERROR_MESSAGE);

JOptionPane.showMessageDialog (this,
"The next Jjob 1s to reestalish
the session, "Next Process",
JOptionPane.INFORMATION_MESSAGE);

/**
* After the physical connection is

lost,
* the client socket will be closed

and the agent
* 18 trying to establish the new

commnication

<p>
* Five steps to communicate with
the client are
* Step 1 - Close the opened
socket

84

* Step 2 - Call agent to do the
reconnect process

* Step 3 - Do the iteration until
the connection is resumed

* Step 4 - Continue communicate
with the server via streams

* Step 5 — Get the rest of the
data until the end of the file

*/

// type of protocol should be passed
controlAgent .reconnectProcess ("TCP") ;

} catch (IOException io) {
} // end try - catch
} // end inner while
} // end outer while
textArea.append ("\n") ;
LextArea.append (String.valueOf (socket.isClosed())
GgptionPane.showMessageDialog(this, "End of

File!");

} // end TCPStart ()

/**
* Persistent UDP connection
*/

private void UDPStart () {

System.out .println ("Random port = " +
randomRTPPort ()) ;
try {
if ((knowSize == false) && (connect ==
false)) {
open () ;
textArea.append ("Connected\n") ;
fileSize = findSize();

85

} // end 1f

/** construct a new DatagramSocket to

receive RTP packets
* from the server, on port RTP RCV PORT */

RTPsocket = new
DatagramSocket (RTP_RCV PORT) ;

} catch (SocketException se) {
timer.stop (),
System.out .println ("Socket exception: " +
se)
JOptionPane.showMessageDialog(this, "The

connection has lost, error in the
underlying protocol");

} // end try - catch

ready = setupUDPSession();

// add text onto the GUI panel
textArea.append ("\n") ;

tLextArea.append ("Now waiting for the action from

the user...\n");

} // end UDPStart ()

/**
* UDP session initialization
*/
private boolean setupUDPSession () {

//init RTSP seguence number
RTSPSegNb = 1;

/** Send SETUP message to the server to start the
video then wait for listener for the next

action */
send("/Setup " + RTSPSegNb + " " + RTP RCV PORT);

return true;

} // end setupUDPSession ()

86

*

Method to control the physical connection

@param client - the string request
@param port - port for TCP connection
* @param host - IP address of the server
*/
private void fileControl (Client client, int port,
String host) {

X % o X% %

controlAgent = new ConnectionControl (client,
port, host);

} // end fileControl ()

/**

* Method to find the size of the file
*

* @return size the size of the file in bytes
*/

private int findSize () {
int size = 0y
try |
open () ;
String text = new String("");
send (" /size");
textArea.append ("Now getting the file size from

the server...");
text = br.readLine();

textArea.append (" --—-> " + text + " bytes\n");
if (knowSize == false) {

size = Integer.parselnt (text);

knowSize = true;

} // end if
progressBar.setMaximum(size - 3);

} catch (NumberFormatException ex) {
System.out .println (ex.getMessage())
} catch (IOException ioex) {

87

System.out .println (ioex.getMessage ());
} catch (NullPointerException npe) {
System.out .println (npe.getMessage ()),

return size;

} // end findSize ()

/**
* Method to parse the request from the server
*/

public void parse server response() {
try {

System.out .println ("in parse server response(),
waiting for response...");
textArea.append("\nin parse server response(),
waiting for response...");
//parse request line and extract the
request type:
String requestlLine = br.readLine();

System.out .println ("RTSP Client - Received from
Server:");

System.out .println ("Received --> " +
requestLine);

textArea.append ("\nReceived --> " + requestLine);

if (requestlLine.equalsIgnoreCase ("EOF")) {

JOptionPane.showMessageDialog(this, "End of the
video");
ready = false;

int reply = JOptionPane.showConfirmbialog(null,
"Would like to see again?" , "Ask for your
permission", JOptionPane.YES NO OPTION)
if (reply == JOptionPane.YES OPTION)
JOptionPane.showMessageDialog (this, "Please
press Play button to sees it again");
else |
JOptionPane.showMessageDialog(this, "Return
£o main menu");
f.setVisible(false);

88

} // end if - else if
} catch (Exception ex) {

System.out .println ("Exception caught: " + ex);
System.exit (0);

} // end try - catch

} // end parse RTSP request ()

//
// Main Method

//

/**

* Main method to start the clilient
*

* @param arg argument list
*/

public static void main(String arg[]) {
Client client;

if (arg.length '= 2) {
System.out .println ("Usage: Jjava Client
<hostname> <portnumber>");
System.exit (—-1);
}

client = new Client (argl[0],
Integer.parselInt (argl[l]));

// exits when the window is closed
client.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {

System.exit (—-1);

}
)/

} // end main ()

89

//
// Action Listener Methods:

//

private class MenuHandler implements ActionListener

public void actionPerformed (ActionEvent e) {

if (e.getSource() .equals(size)) {
open () ;
fileSize = findSize();

} else if
(e.getSource () .equals (filePersistent)) {

connectionCase = 1;

textArea.append ("\nTCP connection
selected!'\n") ;

LextArea.append(Please press connect button

to receive the data...\n");

} else if
(e.getSource () .equals (filePersistent2)) {

// do UDP

connectionCase = 2;

UDPThread = new Thread(Client.this);

textArea.append ("\nUDP connection
selected!'\n");

textArea.append("Please press connect
button to receive the data...\n");

} // end if - else if

} // end actionPerform()

} // end class MenuHandler

90

private class ButtonHandler extends JFrame implements
ActionlListener {

public void actionPerformed (ActionEvent e) {
if (e.getSource () .equals (buttonClose)) {
System.exit (0);
} else i1if (e.getSource () .equals (buttonClose2)) {
RTSPSegNb++;
//Send CLOSE message to the server
send RTSP request ("CLOSE") ;
textArea.append ("\nClient Process Close
button pressed!\n");
timer.stop (),
f.setVisible(false); // disable the
visibility of the GUI

}else if (e.getSource () .equals (buttonConnect)) {

textArea.append ("\nButton Connect
pressed!'\n") ;

if (connectionCase == 0) {
JOptionPane.showMessageDialog (this,
"Please choose one of the options
before hitting the connect button",
"Button Error!'",
JOptionPane.ERROR_MESSAGE);
} else i1if (connectionCase == 1) {
k.setVisible(true),; // Set the JFrame
vigible

findSize () ;

} else {

91

f.setVisible(true); // Set the JFrame
visible
findSize () ;

UDPThread.start () ;// start the UDP
persistent process

} // end if - else
} else i1if (e.getSource () .equals (buttonClose3)) {
textArea.append ("\nTCP Close button

pressed'\n") ;
TCPThread.suspend () ;

int reply =
JOptionPane.showConfirmDialog (this, "Do
you really want to close?", "Ask for
confirmation",

JOptionPane.YES NO OPTION) ;

if (reply == JOptionPane.YES OPTION) {

TCPThread.stop (),

textAreal.setText ("");

k.setVisible (false); // disable the

vigsibility of the GUI

} else {

TCPThread.resume () ;
}

} else if (e.getSource () .equals (buttonbData)) {

textArea.append ("\nNow receiving the data
from the server...\n");

TCPThread = new Thread(Client.this);
TCPThread.start ();// start the TCP
persistent process

} // end if - elsgse if

} // end actionPerform()

92

} // end class ButtonHandler

private class playButtonListener implements
ActionlListener {

public void actionPerformed (ActionEvent e) {

System.out .println("Play Button pressed '");
textArea.append ("\n") ;

textArea.append("Play Button pressed '");,
textArea.append ("\n") ;

if (ready == false) {
ready = setupUDPSession();
} // end if

//increase RTSP seguence number
RTSPSegNb++;

//Send PLAY message to the server
send RTSP request ("PLAY");
fLextArea.append ("Now receiving the video from

the server...\n");

//state = PLAYING;
System.out .println ("New RTSP state:PLAYING");

//start the timer
timer.start () ;

} // end actionPerformed ()

} // end inner class playButtonListener

class pauseButtonListener implements ActionListener {

public void actionPerformed (ActionEvent e) {

93

System.out .println ("Pause Button pressed !'");
textArea.append ("\n") ;

textArea.append ("Pause Button pressed !'");
textArea.append ("\n") ;

//increase RTSP seguence number
RTSPSegNb++;

//Send TEARDOWN message to the server
send RTSP request ("PAUSE") ;

LextArea.append ("The video will be paused and
wait for the action...\n");

//stop the timer
timer.stop (),

} // end actionPerformed ()

} // end inner class tearButtonlListener

class timerlListener extends JFrame implements
ActionlListener {

public void actionPerformed (ActionEvent ev) {

//Construct a DatagramPacket to receive data
from the UDP socket
rcvdp = new DatagramPacket (buf, buf.length)

try {

// Set TimeOut value of the socket.
RTPsocket.setSoTimeout (SOCKET TIMEOUT) ;

//receive the DP from the socket:
RTPsocket .receive (rcvdp) ;

//create an RTPpacket object from the DP
RTPpacket rtp packet = new
RTPpacket (rcvdp.getData(),
rcvdp.getLength ()) ;

94

//print important header fields of the RTP
packet received:

System.out .println ("Got RTP packet with
SegNum # " +
rtp packet.getsequencenumber () + "
TimeStamp " + rtp packet.gettimestamp ()
+ " ms, of type " +
rtp packet.getpayloadtype())

index = rtp packet.getsequencenumber () ;
controlAgent.setIndex (index); // set the
reference of the wvideo

//get the payload bitstream from the
RTPpacket object
int payload length =
rtp packet.getpayload length();
byte[] payload = new byte[payload lengthl];

rtp packet.getpayload(payload);

//get an Image object from the payload
bitstream
Toolkit toolkit =
Toolkit.getDefaultToolkit ()
Image image = toolkit.createlImage (payload,
0, payload length);

//display the image as an Imagelcon object
icon = new Imagelcon (image);

iconlLabel.setIcon(icon);

} catch (InterruptedIOException iioce) {

if (ready == true) {

System.out .println("In timer
InterruptIOException caught: " +
iice.getMessage ()) ;

System.out .println("Seq num = " + index);

timer.stop (),
System.out .println(timer.isRunning());

close(); // close the socket and I/O
streams to guit inner loop

JOptionPane.showMessageDialog(this, "The
connection has lost, error in the

95

underlying protocol", "Socket closed!",
JOptionPane.ERROR_MESSAGE);
JOptionPane.showMessageDialog (this, "The
next Jjob is to reestalish the session",
"Next Process",
JOptionPane.INFORMATION_MESSAGE);

/**

* After the physical connection is lost,

* the client socket will be closed and the
agent

* 18 trying to establish the new
commnication

* <p>
* Five steps to communicate with the
client are

* Step 1 - Close the opened socket

* Step 2 - Call agent to do the
reconnect process

* Step 3 - Do the iteration until the
connection is resumed

* Step 4 - Continue communicate with the
server via streams

* Step 5 — Get the rest of the data
until the end of the file

*/

// type of protocol should be passed on
controlAgent .reconnectProcess ("UDP") ;

}
} catch (IOException ioe) {
System.out .println(" in timer IQOException
caught: " + ioe.getMessage());
} catch (Exception e) {
System.out .println(" in timer Exception
caught: " + e.getMessage());
} // end try - catch
} // end actionPerformed ()

} // end inner class timerListener

} // end class Client

96

/**
*

X% o % %

Title: API Development for Persistent Data Sessions
Support

Description: Persistency API class

Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

import Jjava.io.*;

import Jjava.net.*;
import Java.awt.*;
import Jjava.util.*;
import Java.awt.event.*;
import Jjavax.swing.*;

/**
*

*

*
*
*
*/
pub

This is the critical part of the project. This class 1is
intended to be an API

£o reconnect and send a request instead of the real
client. It will be activated

after the physical connection is lost and it will try to
detect and reestablish

the new connection between the client and the server.
Finally if the connection

is resumed, it will return the parameters and the rest
of the process back to

the real c¢lient. This class 1s 1intended to be a
universal function for the
reconnection. The type of protocol,'TCP' or 'UDP', is

required to be passed
through this function inorder to do the different IJjob
for sending the request.

Expected method: reconnectProcess() - 1t will do the
iteration forever unless
the physical connection is resumed

@author CPT Chayutra Pailom THA

lic class ConnectionControl {

97

//
// Data Members:

//

/** The client object of the project */
private Client client;

/** Socket for TCP and RTSP request */
private Socket socket;

/** Port to communicate with the server */
private int port;

/** The IP address of the server */
private String host;

/** The buffer for input stream */
private BufferedReader br;

/** The buffer for output stream */
private BufferedWriter bw;

/** The reference of the file for TCP and UDP before the
lost connection */
private int index;

/** Logic to control the iteration */
private boolean done;

/** gsocket to be used to send and receive UDP packets */
private static DatagramSocket RTPsocket;

e SN
/7

// Constructor:

/7
R
/**

* Default constructor

*

* @param client - client object

* @param port - port number for TCP, RTSP communication
* @param host - IP address of the server

*/

98

public

this.
.port =
.host =

this
this

ConnectionControl (Client client,
host) {

client = client;
port;
host;

initialization () ;

} // end constructor

int port, String

e
//
// Public Methods:
//
e
/**
* Method to initialize the important parameters
*/
public void initialization() {
index = 0; //very important to retrieve the content of
the file
done = false; // variable for the iteration for doing

the new connectilion

} // end initializeation|()

/**

* Method to reconnect the communication between the
client and the server

*

* @param type - type of protocol to be passed on this

*/

public void reconnectProcess (String type)

fuction

{

System.out .println("Trying to establish the

connection. .
System.out .println("Index to read file

M)y

client .buttonData.setText ("Pause") ;

/**

= " 4+ index);

* Reconnect to the server either TCP or UDP
* This object is trying to help the client to detect

99

* the physical connection. If the connection is
resumed

* it will send the request either TCP or RTSP for the
client and then return the value to the client. The
client

* will continue its job until the end of the file.

* Five steps to reconnect the communication with the
server are

* Step 1 - Trying to establish the connection via
the socket
* Step 2 - If it is resumed, open appropriate

streams for desired data exchange. If it is not,
loop forever

* Step 3 - Communicate with the server via streams
by asking and sending the new reguest to the server
using 'index' as an offset of the retrieved file.

* Step 4 - Set the parameters back to the client
(socket, br bw)

* Step 5 - Return the process back to the client
(br.readLine ())

*/
while ('done) {
try {

/** create new socket, automatically connected if
the physical

* connection resumed

*/

socket = new Socket (host, port);

JOptionPane.showMessageDialog(client,
"Connection resumed!!'!", "Client Status",
JOptionPane. INFORMATION_MESSAGE) ;

// if success, it will print. If not it will go
to the exception

System.out .println ("After create socket,
connection ==> " + socket.isConnected());

open () ;

// set the new parameters for the client
client .setParameters (socket, br, bw);

if (type.equalsIgnoreCase ("TCP")) {

100

System.out .println ("Type = + type);
sendTCPRequest () ;

} else {
try {

System.out .println ("Type = + type);
sendUDPRequest () ;

} catch (Exception e) {}
} // end if - else
done = true; // set the exit of the loop
} catch (UnknownHostException uhe) {
JOptionPane.showMessageDialog(client, "Unknown
server, check the address™);

} catch (IOException ioe) {

System.out .println ("No connection resumed. Still
trying to connect to the server..... "y
try {

Thread.sleep (200);
} catch (Exception e) {}
} // end try - catch
} //end while
} // end reconnectProcess()
/**

* Method to set the reference of the file
*

* @param index - the offset the file
*/
public void setIndex (int index) {

this.index = index;

} // end setIndex/()

101

//
// Private Methods
//

/**

* Method to open all socket variables
*/

private void open{() {
try |

br = new BufferedReader (new
InputStreamReader (socket .getInputStream()))
bw = new BufferedWriter (new
OutputStreamWriter (socket.getOutputStream()))

} catch (UnknownHostException uhe) {

JOptionPane.showMessageDialog(client, "Unknown
server, check the address");

} catch (IOException ioe) {

JOptionPane.showMessageDialog(client, "Cannot connect
to the server, server may be down'");

} // end try - catch

} // end open{()

/**
* Method to send TCP request to the server instead of
the client
*/
private void sendTCPRequest () {

String textOut = "/get " + index;

System.out .println ("Command —--> " + textOut);

JOptionPane.showMessageDialog(client, "The transmission
is continuing from the point it lost!™, "Client

Status", JOptionPane.INFORMATION_MESSAGE);

client .buttonData.setText ("Get Data");,
client .send(textOut);

102

} // end sendUDPRequest ()

/**
* Method to send UDP request to the server instead of

the client
*

* @throws Exception

*/
private void sendUDPRequest () throws Exception {
JOptionPane.showMessageDialog(client, "The video is

continuing from the point it lost!", "Client Status",
JOptionPane.INFORMATION_MESSAGE);

int newRTPPort = client.randomRTPPort ();
System.out .println ("New port = " + newRTPPort);

/** construct a new DatagramSocket to receive RTP
packets from the server, on port RTP RCV PORT */
RTPsocket = new DatagramSocket (newRTPPort)

client .setRTPSocket (RTPsocket);
client.setRandomRTPPort (newRTPPort) ;

// send the requests to get the video
client.send ("/Setup " + index + " " + newRTPPort);
client.send RTSP request ("PLAY");

client.textArea.append("\nSetup and Play regquests
sent!'\n") ;

client.timer.start(); // continue the timer after
sending the new request

client.parse server response();
} // end sendRequest ()

} // end class ConnectionControl

103

/*

*

X% o % %

*

Title: API Development
Support

Description: RTP packets for video file transfer

Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

public class RTPpacket({

//
//
//

for

Persistent Data

/** gize of the RTP header:

*/

static int HEADER SIZE = 12;

/** Version fields the RTP header */

public int Version;

/** Padding field */
public int Padding;

/** Extension field */
public int Extension;

/** Contributing source */
public int CC;

/** Marker field */
public int Marker;

/** Payload of the RTP packet */

public int PayloadType;

/** Sequence number of the RTP packet */

public int SeqguenceNumber;

/** Timestamp */
public int TimeStamp;

/** Synchronization source
public int Ssrc;

*/

104

Sessions

//
//
//

/** Bitstream of the RTP header */
public byte[] header;

/** Size of the RTP payload */
public int payload size;

/** Bitstream of the RTP payload */
public byte[] payload;

* Set an RTPpacket object from header fields and payload

bitstream

@param PType the type of the payload
@param Framenb the sequence number
@param Time time stamp
@param data the array of byte of the data
* @param data length the length of the data
*/
public RTPpacket (int PType, int Framenb, int Time,
data, int data length) {

b R

// Fill by default header fields:
Version = 2
Padding = 0;
Extension =
CC = 0y

Marker =
Ssrc = 0y

// Fill changing header fields:
SequenceNumber = Framenb;
TimeStamp = Time;

PayloadType = PType;

// Build the header bistream:
header = new byte[HEADER SIZE];

// RTP header
header[0] = (byte) (header[0] | Version << 7);
header[0] = (byte) (header[0] | Padding << 5);

105

bytel]

header[0] = (byte) (header[0] | Extension << 4);

header[0] = (byte) (header[0] | CC << 3);
header[1] = (byte) (header[1] | Marker << 7);
header[1] = (byte) (header[1l] | PayloadType << 6);

// Sequence number
header[2] = (byte) (SequenceNumber >> 8);,
header[3] = (byte) (SequenceNumber & O0xFF);,

// Timestamp , all 32 bits

header[4] = (byte) (TimeStamp >> 24);
header [5] (byte) (TimeStamp >> 16);
header[6] = (byte) (TimeStamp >> 8);

header[7] = (byte) (TimeStamp & O0xFF);

// Synchronization source, all 32 bits

header [8] = (byte) (Ssrc >> 24);
header[9] = (byte) (Ssrc >> 16);
header[10] = (byte) (Ssrc >> 8);
header[11] = (byte) (Ssrc & OxFF);

// Fill the payload bitstream:

payload size = data length;
payload = new byte[data length];

// Fill payload array of byte from data (given
parameter of the constructor)
paylocad = data;

} // end constructor

/**

* Set an RTPpacket object from the packet bistream
*

* @param packet the header of the bitstream
* @param packet size the total packet size
*/
public RTPpacket (byte[] packet, int packet size) {

// Fill default fields:

Version = 2;
Padding = 0;
Extension = 0;
CC = 0,

Marker = 0,

106

Ssrc = 0;

// Check if total packet size is lower than the header
size
if (packet size >= HEADER SIZE) ({

// Get the header bitsream:

header = new byte[HEADER SIZE];

for (int 1 = 0; 1 < HEADER_SIZE,‘ i++)
header[1i] = packet[i];

// Get the payload bitstream:
payload size = packet size - HEADER SIZE;
payload = new byte[payload size];

for (int i = HEADER SIZE; 1 < packet size; 1i++)
payload[i - HEADER SIZE] = packet[i];

// Interpret the changing fields of the header:

PayloadType = header[1l] & 127;

SequenceNumber = unsigned int (header[3]) + 256 *
unsigned int (header([2]);

TimeStamp = unsigned int (header[7]) + 256 *
unsigned int (header[6]) + 65536 *
unsigned int (header[5]) + 16777216 *
unsigned int (header([4]);

14

—_— o

} // end if

} // end constructor

/**

* Get payload

*

* @param data - the data of the payload

*

* @return the - the payload bistream of the RTPpacket

and its size
*/
public int getpayload(byte[] data) {

for (int i = 0; 1 < payload size; 1i++)
data[i] = payload[i];

return (payload size);

} // end getpayload()
107

/**

* Get length of the payload
*

* @return the length of the payload
*/
public int getpayload length() {

return (payload size);

} // end getpayload length ()

/**

* Get total length of the packet
*

* @return the length of the packet
*/
public int getlength () {

return (payload size + HEADER SIZE);

} // end getlength ()

/**

* Get the packet size
*

* (@param packet the array of byte of the packet
*

* @return the total size of the packet
*/
public int getpacket (byte[] packet) {

// Construct the packet = header + payload
for (int 1 = 0; 1 < HEADER SIZE; i++)

packet [i] = header[il];
for (int i = 0; 1 < payload size; 1i++)
packet [1 + HEADER SIZE] = payload[i];

//return total size of the packet
return (payload size + HEADER SIZE);

} // end getpacket ()

/**

* Get the timestamp
*

108

* @return the value of the timestamp
*/
public int gettimestamp () {

return TimeStamp;

} // end gettimestamp ()

/**

* Get the sequence number
*

* @return the sequence number
*/

public int getsequencenumber () {
return SequenceNumber;

} // end getsegquencenumber ()

/**

* Getpayloadtype
*

* @return the payload type
*/
public int getpayloadtype () {

return PayloadType;

} // end getpayloadtype ()

/**

* Check and return the proper unsigned number
*

* @param nb - an unsign bit
*

* @return the unsigned value of 8-bit integer nb
*/

static int unsigned int (int nb) {

if (nb >= 0)
return (nb) ;
else
return (256 + nb);,

} // end unsigned int ()

} // end class RTPpacket

109

/**

* Title: API Development for Persistent Data Sessions
Support

Description: Application server

Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

X% o % %

import Jjava.io.*;

import Jjava.net.*;
import Java.awt.*;
import Java.awt.event.*;
import Jjavax.swing.*;

/**
* This is the server of the project. This server is
expected to coordinate
* with one client at a time. It will create the thread as
an 'agent' of the
* gerver. This class i1s intended to use socket programming
for both types of
* protocols and graphic user interface on order to show
the process.

Expected number of clients which server can handle: 30

X % ot

* @author CPT Chayutra Pailom THA
*/
public class Server extends JFrame implements
ActionlListener {

//
// Data Members:

//
[/===mm———= GUI for indicating server process —--———----— /

/** JFrame of the server object */
public JFrame g, h;

/** Lebel for showing the server process */
public JLabel label, label2;

110

/** The area to show the process of the server */
private JTextArea textArea;

/** The button to shutdown the visibility of the GUI */
private JButton buttonExit;

/=== Server socket variables -—-—-—-—-—-—-—-- /

/** Server socket to be used to walt for the client
connection */
private ServerSocket serverSocket;

/** Socket to be used to send the TCP and RTSP request */
private Socket clientSocket;

/** Array of server agent talking to the client */
private ServerThread clientThreadl[];

/** Number of created socket */
private int socketNumber;

/** Input stream filters */
private BufferedReader br;

/** OQutput stream filters */
private BufferedWriter bw;

/** Port to communicate with the server */
private int port;

/** Buffer used to store the file content to send to the
client */

private char[] buffer;

/** Size of the file in bytes */
private int fileSize;

/** File to be sent to the client */
private String fileName;

/** File input stream to be read */
private FileInputStream fis;

/** Status of the connection with the client */
private boolean connectionLost;

111

/** Expected number of clients */
private int noCfClients;

/** Sequence of client connected to the server */
private int clientNumber;

//
// Constructor:

//

/**

* Default constructor

*

* @param name - file name to be retrieved

* @param no - port number of the server to be connected
*/

public Server (String name, int no) {

// initialize variables
fileName = name;
port = no;

connectionLost =
clientNumber = 0;
noOfClients = 0y

// initialize agents

clientThread = new ServerThread[30]; // can handle for
30 threads

//Socket[] clientSocket = new Socket[30];

// frame specifications

Container container = getContentPane ();
this.setTitle ("Server Process");
this.setSize (500, 300);
this.setLocation (0, 0);

// buttons and textcomponents

buttonkExit = new JButton ("Exit");

buttonExit .addActionListener (this);

textArea = new JTextAreal();

textArea.gsetEditable (false);

JScrollPane scrollPane = new JScrollPane (textArea);

// border layout placements
container.setLayout (new BorderLayout ());

112

container.add(scrollPane, "Center");
container.add (buttonExit, "South");

this.setVisible (true),; // set visibiity of the main GUI
boolean done = false;

// GUI for TCP or UDP counter
g = new JFrame (" UDP Counter");
h = new JFrame ("TCP Counter");

// add window listener
g.addWindowListener (new WindowAdapter ()
public void windowClosing (WindowEvent e) {
System.exit (0);

—~

}
1)y
h.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0);
}
1)y

// initialize label

label = new JLabel ("Send frame # ",
JLabel .CENTER) ;

label?2 = new JLabel ("Send character # ",
JLabel .CENTER) ;

// frame attributes both TCP and UDP
.getContentPane () .add (label, BorderLayout.CENTER)
.setSize (150, 50);

.setLocation (280, 50);
.getContentPane () .add(label?2, BorderLayout.CENTER)
.setSize (300, 100);

.setLocation (250, 50);

bP DO QQ

// start the server

try {
serverSocket = new ServerSocket (port);
System.out .println ("Binding to port : " + port +
", please wait ...");
System.out .println ("Server started : " +
serverSocket) ;
System.out .println ("Server IP : " +

serverSocket .getInetAddress()) ;

113

[/ =—m
//
// Public Methods:
//
[/ =—m
/**
* Set the logic of the communication status
*
* @param connectionLost - the status of the
communication
*/

readFile(fileName),; // read the content of the file

into buffer
start(); // go start the server

}

catch (java.io.IQException ioce) {

System.out .println ("Cannot bind to port,
using by another application ");

} // end try - catch

// end constructor

port may be

public void setConnectionLost (boolean connectionLost) {

}

/*
*
*
*

*

this.connectionlLost = connectionlLost;

// end setConnectionLost ()

*

Listener for the exit button

@param e - Listener for the GUI

/

public void actionPerformed (ActionEvent e) {

}

if (e.getSource () .equals (buttonkExit)) {
System.exit (0);
}

// end actionPerformed ()

114

/**

* Add the text to the GUI panel
*

* @param message - message to be added on the panel
*/

public void addTextArea (String message) {

textArea.append (message) ;
textArea.append ("\n") ;

} // end addTextArea ()

//
// Private Methods

//

/**
* Method to start the server
*/

private void start () {

// do the iteration until it reach the maximum number

of threads
while (noOfClients < clientThread.length) {

try |

addTextArea ("Server is waiting for a client to
estabklish the connection...\n");

// create the socket to communicate with the client

clientSocket = serverSocket.accept (),

addTextArea ("Server accepted");

JOptionPane.showMessageDialog(this, "New connection

is established!");

addThread (clientSocket, clientNumber); // create

the thread for communication

addTextArea ("Thread #" + (clientNumber + 1) +
created!'\n");

if (clientNumber > 0) {

115

clientThread[clientNumber -
1] .setConnectionlost (true);
removeThread (clientNumber - 1);

} // end if
clientNumber++; // increment the number of socket
} catch (java.io.IOException ioe) {

System.out .println("Client acceptance error ==> " +
ioe.getMessage ());

} catch (Exception e) {
System.out .println(e.getMessage());
} // end try - catch

} // end while

// inform the user when i1t reaches the maximum number

of clients
if (noOfClients == clientThread.length) {

JOptionPane.showMessageDialog(this, "Server can't add
anymore threads!");

}
} // end start ()
/‘k‘k

* Method to read the content of the file
*

* @param fileName - file to be read into buffer
*
private void readFile(String fileName) {

try {

boolean fileExist = true;

File file = new File(fileName)

try {

fis = new FileInputStream(fileName) ;

116

} catch (FileNotFoundException e) {
fileExist = false;

} // end try - catch

if (fileExist) {

System.out .println("File " + fileName + " is

found") ;

fileSize = (int) file.length(); // get the length
of the file

System.out .println("File Size is : " + fileSize + "
bytes") ;

// declare the array of character to be kept for
sending to the client

buffer = new char[fileSize];

// buffer initialization

FileReader fr = new FileReader (file);

br = new BufferedReader (fr);

br.read (buffer, 0, fileSize); // read the file
into buffer

} else {

System.out .println("file '" + fileName + "' can not
be found") ;

for (int i = 0; 1 < fileSize; 1i++) {
buffer[i] = (char) i;
} // end for
} // end if - else
} catch (Exception e2) {

System.out .println("Problem in reading file" + e2 +

llll),.

} // end try - catch

117

} // end readFile ()

*
Method

/

@param
@param
client

X % 3 o X

*

to add the new connection as a thread

socket - socket for TCP or RTSP communication
clientNumber - the sequence number of connected

* @throws Exception

*/

private void addThread(Socket socket, int clientNumber)
throws Exception {

clientThread[clientNumber] = new ServerThread (this,
socket, fileName, (clientNumber + 1));
open (socket),; // open the streams

// set important parameters

clientThread[clientNumber] .setParameters (br, bw,
buffer, fileSize);

clientThread[clientNumber] .setConnectionLost (false)

clientThread[clientNumber] .start(); // start the

thread

} // end thread

/**

* Method

*

* @param
client

*/

Lo remove the expired connection

clientNumber - the sequence number of connected

private void removeThread (int clientNumber) {

ServerThread toTerminate = clientThread[clientNumber];
fLextArea.append ("Removing thread# " + (clientNumber +

1) +

try {

u\nu) ;

//toTerminate.stop () ;
toTerminate.close () ;

} catch

(IOException ioe) {

118

textArea.append ("Error in closing thread\n");

} // end try - catch

textArea.append ("\nThread# " + (clientNumber + 1) + "
removed!\n\n") ;

} // end removeThread ()

/**
* Method to open streams filters
*
* @param clientSocket - socket for the server - client
communication

*
* @throws IOException

*/
private void open (Socket clientSocket) throws IOException

{

br = new BufferedReader (new
InputStreamReader (clientSocket .getInputStream())) ;

bw = new BufferedWriter (new
OutputStreamWriter (clientSocket.getQutputStream()))

} // end open{()

//
// Main Method

//

public static void main(String arg[]) {

try {

Server server = new Server(argl[0],
Integer.parselInt (argl[l]));

}

catch (NumberFormatException nfex) {
System.out .println(nfex.getMessage());

} catch (ArrayIndexOutOfBoundsException aiobe) {

119

System.out .println ("USage: Java Server
<portnumber>\n");

} catch (Exception e) {
System.out .println(e.getMessage());
} // end try - catch
} // end main ()

} // end class Server

120

/**

X% o % %

Title: API Development for Persistent Data Sessions
Support

Description: Server agent

Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

import Java.awt.event.*;
import Jjava.net.*;

import Jjava.io.*;

import Jjavax.swing.*;
import Jjava.util.*;
import Jjavax.swing.*;
import Jjavax.swing.Timer;

/*

*

*
*
*

*
This class i1s expected to communicate with only one
client per connection.
It acts as an 'agent' of the server. This class is
intended to use socket
and important variables passed from the server for both
types of protocols
and it uses graphic user interface on order to show the
process.
@author CPT Chayutra Pailom THA

/

public class ServerThread extends Thread implements

Runnable {

/** Socket to be used to send the TCP and RTSP request */

private Socket clientSocket;

/** The main object of the execution */

private Server gserver;

/** Input stream filters */

private BufferedReader br;

/** OQutput stream filters */

private BufferedWriter bw;

/** Status of the connection with the client */

private boolean connectionLost;

121

/** The buffer for containing the text file content */
private char[] buffer;

/** Size of the file in bytes */
private int fileSize;

/** File to be sent to the client */
private String fileName;

/** Offset for retriving the data */
private int indexToReadFile;

/** Status of the thread */
public boolean dead;

/** Client number */
private int ID;

/** Socket to be used to send and receive UDP packets */
private DatagramSocket RTPsocket;

/** UDP packet containing the video frames */
private DatagramPacket senddp;

/** Client IP address */
private InetAddress ClientIPAddr;

/** destination port for RTP packets (given by the RTSP
Client) */
private int RTP dest port = 0;

A VDO Variables —-——-———-——-——————————- /

/** Image nb of the image currently transmitted */
private int imagenb;

/** VideoStream object used to access video frames */
private VideoStream video;

/** RTP payload type for MJPEG video */
private static int MJPEG TYPE = 26;

/** Frame period of the video to stream, in ms */
private static int FRAME PERIOD = 100;

122

/** Length of the video in frames */
private static int VIDEO LENGTH = 500;

/** Timer used to send the images at VDO frame rate */
private Timer timer;

/** Buffer used to store the images to send to client */
private bytel[] buf;

/** Sequence number of RTSP messages within session */
private int RTSPSeqgNb;

/** End of command */
private final static String CRLF = "\r\n";

/** rtsp states */
final static int INIT = 0

final static int
final static int

/** rtsp message
final static int

READY =

1;
PLAYING =

2;

types */
PLAY = 3;

PAUSE = 4,
CLOSE 5;

final static int
final static int

/** Logic for iteration control */
private boolean done;

[/ m e
//

// Constructor:

//

A e
/**

* Default constructor

*

* @param pServer - the server object

* @param pSocket - socket for TCP or RTSP communication
* @param fileName - file to be retrieved

* @param threadID - ID of the thread

*

* @throws Exception

*/

public ServerThread (Server pServer,
String fileName, int threadID)

Socket pSocket,
throws Exception {

123

// variable assignment

server = pServer;
clientSocket = pSocket;
this.fileName = fileName;

ID = threadID;

// initialize variables
dead = false;

imagenb = 0;

RTSPSegNb = 0;

// init timer

TimerHandler timerListener = new TimerHandler (),
timer = new Timer (FRAME PERIOD, server);
timer.addActionListener (timerListener)
timer.setInitialDelay (0);
timer.setCoalesce (true) ;

//allocate memory for the sending buffer
buf = new byte[15000];

} // end constructor

/**
* Method to execute the runnable object
*/

public void run() {
try A

// loop until the socket get closed
while ('clientSocket.isClosed()) {

//clientSocket.setSoTimeout (SOCKET TIMEOUT) ;
System.out .println(
"In while loop and wait for the command...");

// get the request from the client - one request
per session
String text = new String(br.readLine());

System.out .println (text);
if (text !'= null) {
handle (text); // server activation

} // end if
124

// check for the end of the file
if (((indexToReadFile) == buffer.length) ||
(imagenb >= VIDEO LENGTH)) {
try {

close(); // close when done, another thread is
waiting for new Jjobs

} catch (java.io.IOException io) {
System.out .println(io.getMessage());
} // end try - catch
break; // guit inner loop
} // end if
} // end while
} catch (SocketTimeoutException stoe) {

System.out .println ("SocketTimeoutException ==> " +
stoe.getMessage ()) ;

} catch (SocketException se) {

System.out .println ("Socket Exception ==> " +
se.getMessage ()) ;

try A
close();
} catch (IOException ioe) {}
} catch (IOException ioe) {

System.out .println ("IOException ==> " +
ioe.getMessage ());

} catch (java.lang.NullPointerException npe) {

System.out .println("NullPointerException ==> " +
npe.getMessage ()) ;

125

} catch (Exception e) {

System.out .println("Client acceptance error == +
e.getMessage () + e);

} // end try - catch

System.out .println ("ConnectionLost status ==> " +
connectionLost)
System.out .println("Socket close? ==> " +

clientSocket.isClosed())
if (connectionLost == true) {
server.setConnectionLost (true) ;
} // end if
dead = true;

} // end run/()
*

/

Method to assign parameters

@param br - Input stream filters

@param bw - Output stream filters

@param buffer - array of characters
* @param fileSize - the size of the file in bytes
*/

public void setParameters (BufferedReader br,

BufferedWriter bw, char[] buffer, int fileSize) {

this.br = br;

this.bw = bw;

this.buffer = buffer;

this.fileSize = fileSize;

b S R

} // end setParameters()

/**

* Method to send the character to the client
*

* @param connectionLost - the status of the connection
*/

public void setConnectionLost (boolean connectionLost) {

126

this.connectionlLost = connectionlLost;

} // end setConnectionLost ()

/**

* Method to close the connection
*

* @throws IOException
*/
public void close() throws IOException {
if (clientSocket.isClosed() == false) {
clientSocket.close();
} // end if
if (br !'= null) {
br.close();
} // end if
if (bw !'= null) {
bw.close () ;

} // end 1f

} // end close

/**

* Method to assign parameters
*

* @param input - the request string from the client
*/
private void handle (String input) {

// sending size
if (input.equals("/size"™)) {

String size = Integer.toString(buffer.length);
System.out .println("size : " + size + "");
send(size);

} // end 1f

127

//sending data
else if (input.startswith("/get ")) {

System.out .println ("Receive command -->" + input);

StringTokenizer st = new StringTokenizer (input);
String[] commandArray = new Stringl2];
int counter = 0;

// keep the indormation of the reguest in the array

while (st.hasMoreTokens()) {
commandArray[counter] = st.nextToken();
counter++;

} // end while
if (commandArray[0].equalsIgnoreCase("/get™)) {
// convert to number of the index file to be read -
-> can be started at 0 or at the byte it lost
indexToReadFile =

Integer.parselInt (commandArray[1l]);

server.h.setVisible (true) ;

while (((indexToReadFile) < buffer.length) &&
(connectionlLost == false)) {
try {

// now array(file in bytes) has all bytes -->
send each byte
sendChar (buffer[indexToReadFile]) ;

server.label?2.setText ("Character # " +
indexToReadFile + " , " +
buffer[indexToReadFile] + " 1s sent");

} catch (Exception e) {

System.out .println ("While sending characters,
Exception ==> " + e.getMessage());

} // end try - catch

indexToReadFile++; // increment the index
System.out .println (indexToReadFile + ", " +
buffer.length);,

128

if (connectionLost == true) {

System.out .println ("Next indexToReadFile ==> "
+ indexToReadFile) ;

// break; //exit the while loop

} // end if

} // end while

if (indexToReadFile == buffer.length) {
JOptionPane.showMessageDialog(server, "End of

File. Thread# "™ + ID + " done!'");

server.h.setVisible (false);

} // end if

} // end if

} else if (input.startsWith("/Setup")) {

System.out .println ("Receive command -->" + input);

StringTokenizer st = new StringTokenizer (input);
String[] commandArray = new Stringl[3];
int counter = 0;

// keep the indormation of the reguest in the array

while (st .hasMoreTokens()) {
commandArray[counter] = st.nextToken();
System.out .println (commandArray [counter]);
counter++;

} // end while

RTSPSegNb = Integer.parselnt (commandArray[1l]);
RTP dest port = Integer.parselnt (commandArrayl[2]);

// do setup session automatically
// init the VideoStream object:
try |

video = new VideoStream(fileName);

129

} catch (Exception e) {

System.out .println("problem creating video stream"
+ e);

} // end try - catch

// init RTP socket
try |

RTPsocket = new DatagramSocket (),
} catch (Exception e) {

System.out .println ("problem creating Datagram
Socket" + e);

} // end try - catch

System.out .println ("RTPsocket created!"™);

// Wait for the SETUP message from the client
int request type;

done = false;

ClientIPAddr = clientSocket.getInetAddress()
System.out .println("ClientIPAddr = " + ClientIPAddr);

server.g.setVisible (true) ;
while ('done) {

// parse the request

request type = parse RTSP request (), // blocking
if ((request type == PLAY)) {
if (RTSPSegNb == 0) {

System.out .println("In else if 'PLAY' before
start the timer");

// start sending the video
timer.start (),

} else {

130

// skip to the point it lost the connection
System.out .println ("RTSP Sequence number = " +
RTSPSegNb) ;

// do the iteration, Jjust reading - no sending
for (int 1 = 0; i < RTSPSegNb; i++) {

try {

imagenb++;
System.out .println("\nIn for loop, discard
frame# " + 1);

// get next frame to send from the video,
as well as its size

int image length = video.getnextframe (buf);,

System.out .println("image length = " +
image length);

// Builds an RTPpacket object containing the
frame
RTPpacket rtp packet = new
RTPpacket (MJPEG TYPE, imagenb, imagenb *
FRAME PERIOD, buf,
image length);

// get to total length of the full rtp
packet to send

int packet length = rtp packet.getlength();,

System.out .println ("packet length = " +
packet length);

// retrieve the packet bitstream and store
it in an array of bytes
byte[] packet bits = new
byte[packet length];
rtp packet.getpacket (packet bits);
} catch (Exception e) {
System.out .println(e.getMessage());

} // end try - catch

} // end for

131

/** After reading the undesired VDO part, start
to send the rest
* of the video to the client */
timer.start (), // start timer
} // end if - else
} else 1f (request type == PAUSE) {

System.out .println("In else if 'PAUSE'");
timer.stop (), // stop timer

} else 1f (request type == CLOSE) {

System.out .println("In else if 'CLOSE'");
timer.stop(),;// stop timer

done = true;

//RTPsocket.close();

server.g.setVisible (false);
} // end if - elsgse if

try {

// End of File
if (imagenb >= VIDEO LENGTH) {

done = true;
RTPsocket .close () ;

} // end if
} catch (Exception e) {

System.out .println ("problem creating Datagram
Socket" + e);

} // end try - catch
} // end while
} // end else if "/Setup'

} // end handle ()
/‘k‘k

132

* Method to send the message to the client
*

* @param message - the string request
*/

private void send(String message) {
try {

bw.write (message) ;
bw.newLine () ;
bw.flush();

} catch (IOException ioe) {

server.addTextArea ("While sending command,
IOException ==> " + ioce.getMessage());
} // end try - catch

} // end send()

/**

* Method to send the character to the client
*

* @param ch - the string request
*/
private void sendChar (char ch) {
try {
bw.write (ch);
bw.newLine () ;
bw.flush () ;
} catch (IOException ioe) {
System.out .println(this + "While sending characters,
IOException ==> " 4+ ioce.getMessage());
connectionLost = true;
} catch (Exception e) {
System.out .println(this + "While sending characters,
Exception ==> " + e.getMessage());

connectionlLost = true;

} // end try - catch

133

} // end sendChar ()

/**

* Method to parse the request from the client
*

* @return request type
*/
private int parse RTSP request () {
int request type = -1;
try |

//parse request line and extract the request type:
String RequestlLine = br.readLine();

System.out .println ("RTSP Server - Received from

Client:");

System.out .println ("Received command --> " +
RequestLine) ;

StringTokenizer tokens = new

StringTokenizer (RequestLine)
String request type string = tokens.nextToken();

if ((new
String(request type string)) .compareTo ("PLAY")
== 0) {
request type = PLAY;,
System.out .println ("Request type --> " +
request type);

} else if ((new
String (request type string)) .compareTo ("PAUSE")

request type = PAUSE;
System.out .println ("Request type --> " +
request type);

} else if ((new
String (request type string)) .compareTo ("CLOSE")

request type = CLOSE;
System.out .println ("Request type --> " +
request type);

134

} // end if - else if

} catch (Exception ex) {

System.out .println ("Exception caught: " + ex);
System.exit (0);

} // end try - catch

return (request type);

} // end parse RTSP request ()

/**
* Method to send the response to the client
L
private void send RTSP response () {
Ery 1
System.out .println ("EOF sent!");
// write the message to the server using buffer
writer
bw.write ("EQOEF") ;
bw.flush () ;
} catch (Exception ex) {
System.out .println ("in send Exception caught: "
ex) ;
System.exit (0);
Y /7 etd tey — gateh
} // send RTSP_response ()
[/ =———m—————— INNER CLASS ———————————————
e R R
{1
// Action Listener Methods:
it
B R R e St

135

private class TimerHandler extends JFrame implements
ActionlListener {

public void actionPerformed (ActionEvent e) {
System.out.println ("\nIn the timer");

// if the current image nb is less than the length of
the video
if (imagenb < VIDEO LENGTH) {

imagenb++;// update current imagenb
try {

// get next frame to send from the video, as well
as its size
int image length = video.getnextframe (buf);,
System.out .println("image length = " +
image length);

// Builds an RTPpacket object containing the
frame

RTPpacket rtp packet = new RTPpacket (MJPEG TYPE,
imagenb, imagenb * FRAME PERIOD, buf,
image length);

// get to total length of the full RTP packet to

send
int packet length = rtp packet.getlength();,
System.out .println ("packet length = " +

packet length);

// retrieve the packet bitstream and store it in
an array of bytes

byte[] packet bits = new byte[packet length];

rtp packet.getpacket (packet bits);

// send the packet as a DatagramPacket over the
UDP socket

senddp = new DatagramPacket (packet bits,
packet length, ClientIPAddr, RTP dest port);

136

// test the connection by using get command
if (connectionLost == false) {

//Thread.sleep (500); // make it longer
RTPsocket.send (senddp) ;

// update GUI

server.label.getText ("Send frame # " + imagenb
+ u\nu) ;
System.out .println("Send frame # " + imagenb);
} else {

System.out .println ("\nPhysical connection is
lost for thread# ." + ID);,

System.out .println ("\nThe timer will be stop
and wait for another request from the
client!'\n"™);

// stop the timer
timer.stop (),
server.g.setVisible (false); // disable the
visibility of the GUI
} // end if - else

} catch (Exception ex) {

System.out .println ("Exception in the timer");
System.out .println ("Exception caught: " + ex);

System.exit (0);
} // end try - catch
else {

// if we have reached the end of the video file,
stop the timer

timer.stop (),

System.out .println ("The end of the video!"™);

try |
send RTSP response();

int reply = parse RTSP request();
137

if (reply == CLOSE) {
done = true;
//RTPsocket.close () ;
server.g.setVisible (false);

} // end if

} catch (Exception exp) ({}
} // end if - else
} // end actionPerformed ()

} // end inner class timerListener

} // end class ServerThread

138

/*

X% o % %

*

Title: API Development for Persistent Data Sessions
Support

Description: Streaming Video with RTSP and RTP
Compiler : JBuilder 9

Author CPT.Chayutra Pailom THA

Date : January 20, 2005

import Jjava.io.*;

public class VideoStream ({

//
//
//

//
//
//

/** Video file */
FileInputStream fis;

/** current frame nb */
int frame nb;

public VideoStream(String filename) throws Exception/{

//init variables
fis = new FilelInputStream(filename);
frame nb = 0;

} // end constructor

*

/

Get the next frame

@param frame array of byte of the video

X% o % o

@return the next frame as an array of byte and the
size of the frame

139

* @throws Exception
*/
public int getnextframe (byte[] frame) throws Exception {
int length = 0;
String length string;
byte[] frame length = new byte[5];

// Read current frame length
fis.read(frame length,0,5);

// Transform frame length to integer
length string = new String(frame length);
length = Integer.parselnt (length string);
return (fis.read (frame, 0, length));

} // end getnextframe ()

} // end class VideoStream

140

APPENDIX B. CLASS DIAGRAMS

In this section,

are shown in order

class

Class

Class

Class

Class

Class

diagram
diagram
diagram
diagram
diagram

diagram

as

of

of

of

of

of

of

the

class diagrams from Chapter IV

following:

the

the

the

the

the

the

application client
persistency API

RTP packet

application server
application proxy server

streaming video for RTP and RTSP

141

javax.swing

javanet

javaio

red

ConnectionControl

javax.swing

|

Client

java.awt

Ty but: byte]]
Tp timer : Timer
Sy br : BuTfersdReader

Container I

Hy putonClose - JBution

8y putonClose2 - JButton
By buttonClose3 : JButton
S puttonConnect : JButton

BufferedReader || Bufferedwriter

javalang
String

Sy puttonData JButton
8y puttonPanel - JPanel
Hp buttonPanel2 : JPanel
By puttonPaneld : JPanel
By bw - Bufferediriter

3 connedtionCass © int

By container : Cortainer

Sy controlagent | ConnectionCentrol
g CRLF - String

8y 1 JFrame

DatagramPacket || DatagramSocket || Socket

Hy filePersistent : heruttem
By filePersistent2 | dMenutem
3y fileSire - int

8y icon - Imagelcon

By iconLebel : JLabel

g inclex : int

Sy k. JFrame

8y knowsize - boolesn

Hy mainPane! : Jeanel

Sy menubar : MenuBar

Imageicon |[JButton || JFrame || JLabel || JMenu |[JMenuBar |[JMenuttem || JPanel || JProgressBar || JscrolPane || JTextarea |[Timer

Figure 40.

Zp menuCommand ; JWenu
8y WMIPEG_TVPE - int

B pauseButton : JEutton

8y playButton : JEuttan

Ey port : int

8y progressBar : JProgressBar
Hy rewdp : DatagramPacket
By RTP_RCW_PORT : int

3y RTPsocket : DatagramSocket
8y RTSPSEgMb - int

&y serolPane : JScrolPane
By serolPane2: JScrolPane

Sy size : IMenutiem

8y socket - Socket

Slp SOCKET_TIMEQLT : int

&y TCPPanel: JPanel

Sy textares : JTextares

3y texthrenl - JTextdrea

By textPanel : JPanel

S textPanel2 : JPane!

jova.awt |

¥ v
[BorderLayout |[composwent |[Dimension |[GridLayout | [Layoutihaager |

java.awt.event ‘

|
¥ il
Actioniistener || WindowAdapter

|
Ul il
‘WindowEvent Windowd isterer

1
¥ i
10Exception || MmputStream
java.lang

InputStreamReader

|
W
QutpatStrean

|
v il
QutputStreamWriter PrintStream

1
¥ i
Exception | [Integer
java.net

i vl Ui
HullP pinterException HumberFormatException Object

|
il
StringBuffer

javax.swing

& Cliertr) : void

% closer) : void

% et IDPPort() : int

® maing) : void

% open() : boolean

% send() : void

% send RTSP_request): vaid
® setParameters() : vaid
2 fileControi() : woid

2 findSize(): irt

TCPStart() : vaid

% LDPStan() : void

& host: String

|
JOptionPane

Class diagram of the application client

142

i v] i
ConnectException HoRouteToHostException SocketException UnknownHostException

—

java.lang

red
red ConnectionControl red ‘
Client = = —— {_GlientimerListener |
Eb br : BufferedReader
java.io Eb by : Bufferechiriter java.awt
Sy cliert : Client
Eb done : boolean W~ —,
:b» hast : String
| BufferedReader | | Bufferedwriter | j&, port : int
ik socket | Socket I e e e e
java.lang] R e e e g el e e e s i e e e e 1 |
D ConnectionControl() : soiel [BI T T Z]SS—"————————————————————————————— 1 | |
Strlng i o -l | |
% intialization) : void [|
java.net L reconnect?rocess() Dvoid [Wy 511- 1lf ‘lf
& open(): void [10Exception || seputStream || InputStreamReader |[OwtputStream || outputStreamwriter || PrintStream || Reader |[wiriter |
@ j sendTCPRequest() ; void
% sendUDPReguest() : vaid oA
& index : int [
Il
| Exception || StringBuffer | | System || Thread |
Java.net
-—— —;)=| UnknownHostException | |
Javax.swing
CH———
| JOptionPane || Timer |
Figure 41. Class diagram of the persistency API

143

java.lang

red

RTPpacket red

| Client.timerListener || ServerThread || ServerThread.TimerHandler

& CCoint | | |
4 Extension : int] | ety & o oA e o 3 = |
#hssderibvtsl 0 [

& Marker © int

& Padding : int

& payload : byte]

& payload_size : int

& PavloadType : int

& SequenceMumber ; int
& Sarc:int

& TimeStamp : int

& Wersion :int

A% HEADER_SIZE : int

% getlenathi ; int

® getpacket() : int

% getpayload() : int

% getpayload_lengthi : it
% getpayloadtypel) | int
% getseguencenutnber(] ; int
% gettimestampr) © int

% printheader() ;. woid

% RTPpacket() ; void

% RTPpacket(] : void

¥ unsigned_irtr) : int

Figure 42. Class diagram of the RTP packet

144

red

java.awt.event ‘

javax.swing |

Actionl istarar |<J-| | [SFrame

-

red ‘

Server

red |

ServerThread

& o JFrame
& h JFrame
& lahel: JLabel

& label2: JLabel

BufferedReader || Bufferedwriter || FilelnputStream |

java.net ‘

il‘p br : ButferedReader
% butter : chat|]

S puttonExit - JButton
-’% b - Buffersdiiriter
%v clienthumber : int

il; clientSocket : Socket

jly clientThread : ServerThread]]
3& fileMame : String

Sy filezize : int

ServerSocket

ib fig : FileinputStream
Sy nooiclients : int
By port : int

jb sockethlumber ; int

39 textirea : JTextArea

'—;)‘y serverSocket | ServerSocket [

t=— — — | ServerThread.TimerHandler

/i
| BorderLayout H Component || Container H L

java.awt.event

[3Button |[JFrame |[siabel |[JTextarea |

Figure 43.

% actionPerfarmed() : void
% addTexdarea)) : void
% main() : void
% Server(): void
% addThread() : vaid
* cpen() : void
% readFiler) : void
% removeThread() : void
e startr) : void

PR

= ¥
| FileHotFoundException | [Fil

¢ connectionLost : boolean

¥ ¥
| ArrayindexOutOfBoundsException H Exception H Integer H HumberFormatException || Object H StringBuffer H System ‘

java.net

javax.swing

———3| InetAddress

=]

JScrollPane

145

Class diagram of the application server

i

red

java.lang

Thread =1

Rennable [

A

red

ServerThread

‘ BufferedReader || BufferedWriter ‘

javalang

String |

Packet || Datagr

ket |[InetAddress || Socket |

Datagr

Figure 44.

javax.swing

4 dead : boolean
Tp CLOSE: int
T INIT : int

Tp PALSE : int
Tp PLAY it

Tp PLAYING : int

Sy br: ButferecResder
Sy bt ; bytef]

% huffer : char(]

—Tb b » Butferedivriter
j& CligrtlPAddr © Inetiddress
By clisrtsncket | Socket
Sy CRLF : String

-'E-b done : hoolean

Sy filerame : String

Sy filesize : int

Sy FRAME_PERIOD : it
e 1D int

:b imagenb : int

8y indexToReadFile : int

Timer —l

Sy MJPEG_TWRE : int

Sy RTP_dest_port : int

39 RTPzocket : DatagramSocket
RTSFSechh - int

By server: Server

Eb timer : Timer

Eb video | VideoStream
% YIDEQ_LENGTH : int

% cloze(): vaid

% run() : void

R ServerThread() : void

% setParameters(): void

P handler) : void

a2 parse RTSP_requestt): int
? Fendl) : void

j’ send_RTSP_responsel) : void
j’ sendChar) : woid

4 connectionLost : boolean

- — —~{_Component |

—— — —=={ Actionlistener

S senddp: DatagramPacket Ll LI StringTokenizer

——— == RTPpacket

Java.awt

java.awt.event

javado ‘

Tp READY : it Ch— .]

V
‘ 10Exception || PrintStream |

[sFrame |[JLabel |[JoptionPane |

red

Class diagram of the application proxy server

146

java.lang

red

red

VideoStream red

ServerThread — |- SO

% = —| ServerThread.TimerHandler
fiz ; Filelnput=tream

java.io 1y frame_rb: it java.lang
| FilelnputStream | $ getnextiiame: . F = IS S oo
D VideoStream() void [T "1

| Exception || Integer || String |

Figure 45. Class diagram of the streaming video for RTP and RTSP

147

THIS PAGE INTENTIONALLY LEFT BLANK

148

LIST OF REFERENCES

[1] Wikipedia, “Session” The free encyclopedia. Internet
Available http://en.wikipedia.org/wiki/Main Page
(2 February 2005) .

[2] Java, “Networking Features”. Internet Available
http://java.sun.com/j2se/1.5.0/docs/guide/net/ (5 February
200%) .

[3] Disco Lab, “Laboratory for Network Centric Computing”.
Internet Available http://discolab.rutgers.edu/index.html
(20 December 2004)

[4] Pantoleon, Perliklis K. “Reliable Content Delivery
using Persistent Data Sessions in Highly Mobile
Environment”, Master Thesis, March 2004.

[5] Stevens, R. “UNIX Network Programming”, Englewood
ClLiffs: Prentice—Hall: Ing., 1890,

[6] Developer Works, “Developing an On Demand Workplace,
Part Vi Beally gping meblle” TBM, Internel Avgilable
http://www—106.ibm.com/developerworks/library/i-workplace7/
(15 February 2005) .

Kurose, James F. and Ross, Keith W. Computer networking, A
Top-Down Approach Featuring the Internet Second Edition,
Amsherst: University of Massachusetts and Eurecom
Institute.

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Peter J. Denning, Chairman, Ph.D, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, California

Su Wen, Assistant Professor, Ph.D, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, California

Arijit Das, Research Associate, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, California

Captain Chayutra Pailom

Royal Thai Supreme Command Headguarter
Bangkok, Thailand

151

